GPLUS EDUCATION

Dat Tin	ne :			CHEMISTRY
Mai	rks :	STRUCTU	RE OF ATOM	
		Single Corr	ect Answer Type	
1.	Choose the incorrect re	lation on the basis of Boh	r's theory	
	a) Velocity of electron	$\times \frac{1}{n}$	b) Frequency of revolut	ion $\propto \frac{1}{m^2}$
	c) Radius of orbit $\propto n^2 \lambda$	16	d) Force on electron $\propto \frac{1}{r}$	
2.	X-rays were discovered		a) roree on electron in	14
۷.	a) Becquerel	b) Roentgen	c) Mme. Curie	d) Van Laue
3.		me orbital may be identif		a) van Baae
	a) n	b) <i>l</i>	c) <i>m</i>	d) <i>s</i>
4.	•	pal quantum number 3. 1	Γhe number of its (i) subshe	lls and (ii) orbitals would be
	a) 3 and 5	b) 3 and 7	c) 3 and 9	d) 2 and 5
5.		ectrons in a subshell of a	n atom is determined by the f	_
	a) $2n^2$	b) $4l + 2$	c) $2l + 1$	d) $4l - 2$
6.		00 times that of an electro		
_	a) Proton	b) Positron	c) Meson	d) Neutron
7.	_	has the maximum numbe	er of unpaired electrons?	d) V ³⁺
0	a) Mg ²⁺	b) Ti ³⁺	,	a) v
8.	a) By emission of electr	ohr stationary orbit can g	to next nigher orbit	
		electromagnetic radiation	ICATION	
		ctromagnetic radiation of		
		absorption of electromag	-	
9.	-	e present in tritium nucle	_	
	a) 2	b) 3	c) 1	d) 0
10.	The number of wave m +3 is:	ade by an electron movin	ng in an orbit having maximu	m magnetic quantum number
	a) 4	b) 3	c) 5	d) 6
11.	The wavelength of a spe	ectral line emitted by hyd	lrogen atom in the Lyman ser	ies is $\frac{16}{15R}$ cm. What is the
	value of n_2 ?(R =Rydber	g constant)		
	a) 2	b) 3	c) 4	d) 1
12.	The statements, which	is/are correct:		
	a) Number of total node			
	•	des in an orbital = n - l -	- 1	
	c) Number of angular n	lodes in an orbital = l		
10	d) All of the above	-1		
13.	a) 9.94×10^{-12}	b) 9.94×10^{-19}	n is 2000Å, what is its energy c) 4.97×10^{-12}	in ergs? d) 4.97×10^{-19}
14	,		configuration $1s^2$, $2s^22p^4$:	uj 4.7/ ^ 10
⊥ Т.	a) 2	b) 3	c) 4	d) 6
15.	•	the particle nature of cath	-	~, ·
	a) Produce fluorescence	-	,	

				Gplus Education
	b) Travel through vac			
	-	ectric and magnetic fields		
	d) Cast shadow			
16.	•	uration $1s^2$, $2s^22p^6$, $3s^13p^1$	-	D. D
4.5	a) Ground state of Na	•	,	d) Excited state of Al ³⁺
17.	What accelerating po-	tential is needed to produce	an electron beam with an e	effective wavelength of
	a) 1.86 × 10 ⁴ eV	b) $1.86 \times 10^2 \text{eV}$	c) $2.86 \times 10^4 \text{eV}$	d) $2.86 \times 10^2 \text{ eV}$
1Ω	•	g pairs have identical values		uj 2.86 × 10 ev
10.	a) A proton and a neu		b) A proton and deuter	ium
	c) Deuterium and an		d) An electron and γ-ra	
19.	Positive charge in an		.,, ,	-, , ,
	a) Scattered all over t			
	b) Concentrated in th	e nucleus		
	c) Revolving around	the nucleus		
	d) None is true			
20.			tic moment of 3.83 B.M. 7	The correct distribution of 3a
	electrons in the chror	nium of the complex:		
	a) $3d_{xy}^1, 3d_{yz}^1, 3d_{xz}^1$			
	b) $3s_{xy}^1$, $3d_{yz}^1$, $3d_{z^2}^1$			
	c) $(3d_{x^2-y^2}^1)$, $3d_{z^2}^1$, 3			
	d) $3d_{xy}^1$, $\left(3d_{x^2-y^2}^1\right)$, 3	d^1_{yz}	>	
21.	The mass of an electr	on is \emph{m} , its charge is \emph{e} and it	is accelerated from rest th	rough a potential difference,
	V. The velocity of elec	ctron will be calculated by fo	rmula	
	a) $\sqrt{\frac{V}{m}}$	eV	(2eV)	d) None of these
	$\sqrt{\frac{m}{m}}$	b) $\sqrt{\frac{eV}{m}}$	$(\frac{1}{m})$	
22.	The present atomic w	The second second second	GIVILLOIT	
	a) C ¹²	b) 0 ¹⁶	c) H ¹	d) C ¹³
23.	Which one of the follo	owing set of quantum numbe	_	on in the ground state of an
	atom with atomic nur	nber 19?		
		b) $n = 2, l = 1, m = 0$		
24.			carbon consists of isotope:	s of C^{12} and C^{13} . Total number
	of CO ₂ molecules pos			
	a) 6	b) 12	c) 18	d) 1
25.	=	an orbital n in an atom, the n	-	-
26	a) 1	b) 2	c) 3	d) 4
26.	•	-	t, the total number of var	ues for the magnetic quantum
	number m are given by a) $l+1$	b) 2 <i>l</i> + 1	c) 2 <i>l</i> – 1	d) $l + 2$
27	•	imber for the last electron in		uji + Z
_,.	a) 3	b) 1	c) 2	d) Zero
28.	•	certainty principle can be ap	,	4) 2010
	a) A cricket ball	b) A football	c) A jet aeroplane	d) An electron
29.	Isotopes are	-		•
	a) Atoms of different	elements having same mass	number	
	=	nents having same mass nur		
	c) Atoms of same eler	nents having different mass	number	

				Opius Luucutioi
	d) Atoms of different elements h	•	er of neutrons	
30.	Which element possess non-sph	erical shells?		
	a) He b) B	_	c) Be	d) Li
31.	Splitting of spherical lines when	•	- C	
		ırk effect	c) Decay	d) Disintegration
32.	An orbital in which $n = 4$ and $l = 1$	= 2 is expressed b		15.7
	a) 4s b) 4p		c) 4 <i>d</i>	d) 5 <i>p</i>
33.	Which wave property is directly		•	
24	-	equency	c) Wave number	d) All of these
34.	Mass of an electron is : a) 9.1×10^{-28} g b) 9.1	· 10=25 -	a) 0.1 v 10=10-	1) 0 1 × 10-18-
25	Which is the correct outermost s	$\times 10^{-25}$ g	c) 9.1×10^{-10} g	d) 9.1×10^{-18} g
33.	which is the correct outermost s	snen configuration	of chromium?	
	a)			
	b) 1 1 1			
	c) 1 1 1 /]		
	d) 1 1 1 1 1			
36.	Which of the following ion will s	how colour in aqu	eous solution?	
			c) $Lu^{3+}(Z=71)$	d) $Sc^{3+}(Z=21)$
37.	The electric configuration of elec	nent with atomic	number 24 is	
	a) $1s^2$, $2s^22p^6$, $3s^23p^63d^4$, $4s^2$		b) $1s^2$, $2s^22p^6$, $3s^23p$	$0^6 3d^{10}$
	c) $1s^2$, $2s^22p^6$, $3s^23p^63d^6$	7	d) $1s^2$, $2s^22p^6$, $3s^23p$	$0^6 3d^5, 4s^1$
38.	What is the maximum number o	f electrons in an a	tom that can have the fol	lowing quantum numbers $n =$
	$4, m_1 = +1?$	LUS EDU	CATION	
	u) 1		c) 3	d) 6
39.	1 1 1	of an atom represo	ents:	
	a) Size and energy of the orbit			
	b) Spin angular momentum			
	c) Orbital angular momentumd) Space orientation of the orbit	ale		
40.	The specific charge for positive		han the specific charge fo	or cathode rays. This is because
101	a) Positive rays are positively ch		nan ene speeme enarge re	r cameae rays, rms is secause
	b) Charge on positive rays is less	O		
	c) Positive rays comprise ionise		ass is much higher	
	d) Experimental method for dete		_	
41.	The magnetic moment of electro	n in an atom (excl	luding orbital magnetic n	noment) is given by:
	a) $\sqrt{n(n+2)}$ Bohr b) \sqrt{n}	(a) 1 1) D M	c) $\sqrt{n(n+3)}$ B. M.	d) None of the above
	Magneton (or B.M)	n(n+1) D.M.	c) $\sqrt{n(n+3)}$ b. M.	
42.	de Broglie equation is a relation	ship between:		
	a) Position of an electron and its	momentum		
	b) Wavelength of an electron an			
	c) Mass of an electron and its en			
	d) Wavelength of an electron an			
43.	Which electromagnetic radiation		=	
		smic rays	c) Infrared rays	d) Microwaves
44	Dimensions of Planck's constant	are:		

_	•	_ ,			
Gpl	אנוו	Fai	uct	วรเก	n
~~:		_~	-	<i>4</i>	

				Gplus Education		
	a) force × time	b) energy × distance	c) energy/time	d) energy × time		
45.	Given: The mass of electr	on is 9.11×10^{-31} kg and				
	Planck constant is 6.626	$\times 10^{-34}$ Js,				
	the uncertainty involved	in the measurement of vel	ocity within a distance of 0.	1 Å is:		
	a) $5.79 \times 10^8 \text{ m s}^{-1}$	b) $5.79 \times 10^5 \text{ m s}^{-1}$	c) $5.79 \times 10^6 \text{ m s}^{-1}$	d) $5.79 \times 10^7 \text{ m s}^{-1}$		
46.	If helium atom and hydro	gen molecules are moving	with the same velocity, the	ir wavelength ratio will be		
	a) 4:1	b) 1:2	c) 2:1	d) 1:4		
47.	The energy required to be	reak one mode of Cl 🗕 Cl b	onds in Cl_2 is 242 kJmol $^{-1}$. T	Γhe longest wavelength of		
	light capable of breaking	a single Cl – Cl bond is				
	a) 594 nm	b) 640 nm	c) 700 nm	d) 494 nm		
48.			10^{-5} kg m/s. the uncertain	ty in its position will be		
	$(h = 6.62 \times 10^{-34} \text{ kg m}^2)$	/s)				
	a) 2.36×10^{-28} m	b) 5.25×10^{-28} m	c) 2.27×10^{-30} m	d) 5.27×10^{-30} m		
49.	All types of electromagne	tic radiations possess sam	e:			
	a) Energy	b) Velocity	c) Frequency	d) Wavelength		
50.	The values of four quantu	ım numbers of valence ele	ctron of an element are			
	n = 4, l = 0, m = 0 and s	$x = +\frac{1}{2}$.				
	The element is	2				
	a) K	b) Ti	c) Na	d) Sc		
51.	-	onfiguration of nitrogen at	,	,		
	a) 4 4 1 1 1	b) 11 11 1 1 1 1	c) 1 1 1 1 1 1 1	d) 11 11 11 1		
52.	The value of charge on	the oil droplets experim	entally observed were -1	1.6×10^{-19} and -4×10^{-19}		
	3	e electronic charge, indicat	-			
	a) 1.6×10^{-19}	**************************************	c) -4×10^{-19}	d) -0.8×10^{-19}		
53.	Transition from $n = 4,5,6$	5 to $n=3$ in hydrogen spec	ctrum gives:			
	a) Lyman series	b) Paschen series	c) Balmer series	d) Pfund series		
54.	The atomic numbers of el	ements X , Y and Z are 19,	21 and 25 respectively. The	number of electrons		
	present in the <i>M</i> -shell of	these elements follow the o	order			
	a) $Z > X > Y$	b) $X > Y > Z$	c) $Z > Y > X$	d) Y > Z > X		
55.	The mass number of an	element is 23 and atomic	number is 11. The number	er of protons, electrons and		
	. , ,	esent in the atom of the ele	ments are:			
	a) 11, 11, 12	b) 12, 12, 11	c) 11,12,11	d) 12, 11, 12		
56.	-	the energy of the emitted	electrons is:			
	a) Larger than that of incident photon					
	b) Smaller than that of in	-				
	c) Same as that of incider	=				
	d) Proportional to intensi					
57.		ı electron in an orbital is gi				
	a) $n\frac{h}{2\pi}$	b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$	c) $n\frac{n}{4\pi}$	d) None of these		
58.	21t	2 <i>1</i> 1	wavelength of 5890 A°?($h =$	$= 6.63 \times 10^{-27} \text{ erg-s}$		
001	a) 5.685×10^{-33} g		c) 4.256×10^{-33} g			
59	,	_	s of electrons with the azim	_		
٠,١	l = 1 and 2 are respective		2 22 010001 0110 William Circ aziiii	and damenti intilipers,		
	a) 12 and 4	b) 12 and 5	c) 16 and 4	d) 16 and 5		
60.	The charge on an electron		<i>,</i>	<i>,</i>		
	a) J.J. Thomson	b) Neil Bohr	c) James Chadwick	d) Mullikan		
61.	= · · ·	-	a magnetic quantum numbe	•		

	. 11			Gpius Eaucation
	represented in an	15 10 1		15.6
60	a) s —orbital	b) <i>p</i> –orbital	c) <i>d</i> –orbital	d) f —orbital
62.	The orbital angular mome	entum for an electron revol	lving in an orbit is given by	$\sqrt{l(l+1)}\frac{n}{2\pi}$. This
	momentum for an s-electr	ron will be given by		
	a) $+\frac{1}{2} \cdot \frac{h}{2\pi}$	b) Zero	c) $\frac{h}{2\pi}$	d) $\sqrt{2}$. $\frac{h}{2\pi}$
	2 210			2 10
63.			nber Y. Correct relationshi	
	a) <i>X Y</i>	b) <i>X Y</i>	c) <i>X Y</i>	d) $X Z (1 Y)^2$
64.	Proton is:			
	a) Nucleus of deuterium			
	b) Ionised hydrogen mole			
	c) Ionised hydrogen atom			
<i>-</i> -	d) An α -particle			
65.	An isotone of $^{76}_{32}$ Ge is	1 > 77 .	> 77.0	13. 79 a
	a) ⁷⁷ ₃₂ Ge	b) 77/33As	c) ⁷⁷ ₃₄ Se	d) ⁷⁸ ₃₆ Sc
66.		ts the maximum number o	f electrons in an orbital to t	two?
	a) Aufbau principle	•		
	b) Pauli's exclusion princi			
	c) Hund's rule of maximum	- -		
<i>(</i> 7	d) Heisenberg's uncertain			
67.	0		b) Trying of the notantial	on oway.
	a) Half of the potential en		b) Twice of the potential d) None of the above	energy
60	c) One fourth of the poten		•	
68.	The shortest λ for the Lyn a) 991 Å	b) 700 Å	c) 600 Å	d) 811 Å
60	•			•
69.			with a principal quantum	
70	a) 9 The number of orbitals pr	b) 12	c) 16 4 is	d) 25
70.	a) 16	b) 8	c) 18	d) 32
71	,		tum numbers of an electro	•
/ 1.	a) $n = 3, l = 0, m = 0, s =$	•	b) $n = 2, l = 3, m = 0, s =$	
	c) $n = 3, l = 0, m = 0, s = 0$	· · · · · · · · · · · · · · · · · · ·	d) $n = 3, l = 2, m = 1, s =$	•
72.	Different lines in Lyman s	·		1 1/2
,	a) Ultraviolet	b) Infrared	c) Visible	d) Far infrared
73.	The first energy level that	•	.,	.,
	a) 2	b) 3	c) 4	d) All are correct
74.	•			certainty in its position will
	be		G	
	a) 1.50×10^{-28} m	b) 1.05×10^{-26} m	c) 5.27×10^{-30} m	d) 5.25×10^{-28} m
75.	Which of the following pa	rticles moving with same v	elocity would be associate	d with smaller de-Broglie
	wavelength?			
	a) Helium molecule	b) Oxygen molecule	c) Hydrogen molecule	d) Carbon molecule
76.	Stark effect refers to the			
	a) Splitting up of the lines	in an emission spectrum i	n the presence of an extern	al electrostatic field
	b) Random scattering of li	ght by colloidal particles		
	c) Splitting up of the lines	in an emission spectrum i	n a magnetic field	
	-	rom metals when light falls	s upon them	
77.	For which species, Bohr's	theory does not apply:		
	a) H	b) Be	c) He ⁺	d) Li ²⁺

78.	The energy of electron in first orbit of He^+ is $(R_H = \frac{1}{2})^{-1}$	-871.6×10^{-20} J). The ene	ergy of electron in the first
	orbit of H is:		
	a) -871.6×10^{-20} J b) -435.8×10^{-20} J	c) -217.9×10^{-20} J	d) -108.9×10^{-20} J
79.	The quantum levels upto $n = 3$ has:		
	a) s and p -levels b) s, p, d, f -levels	c) <i>s</i> , <i>p</i> , <i>d</i> -levels	d) s-level
80.	Which of the subshell has double dumb-bell shape?		
	a) s b) p	c) <i>d</i>	d) <i>f</i>
81.	The lightest particle is		
	a) -particle b) Positron	c) Proton	d) Neutron
82.	The ratio of speed of γ -rays and X-rays is:		
	a) 1 b) < 1	c) > 1	d) None of these
83.	The radius of second Bohr's orbit of hydrogen atom	is	
	a) 0.053 nm b) 0.106 nm	c) 0.2116 nm	d) 0.4256 nm
84.	Which set of phenomenon shown by the radiation pr		-
	a) Scintillation		
	b) Interference and diffraction		
	c) Interference and photoelectric effect		
	d) None of the above		
85.	-	e of hydrogen is:	
	a) A band spectrum in emission		
	b) A line spectrum in emission		
	c) A band spectrum in absorption		
	d) A line spectrum in absorption		
86.	The total spin resulting from a d^7 configuration is:		
00.	a) $\pm 1/2$ b) ± 2	c) ±1	d) $\pm 3/2$
87.	The path of deflection of electron beam is:		u) ±3/2
07.	a) Directly proportional to the magnitude of applied	magnetic field	
	b) Inversely proportional to the magnitude of applied		
	c) Inversely proportional to the magnitude of applie	a magnetic neta	
	d) Directly proportional to the e/m value		
ΩΩ	Which one of the following groupings represents a c	allaction of isoalactronic sr	nacias?
00.	(At. no. Cs=55, Br=35)	offection of isoefectionic sp	Jecies:
	(At. 110. Cs = 33, B1 = 33) a) Na, Ca ² , Mg ² b) N ³ , F, Na	c) Be, Al ³ , Cl	d) Ca ² , Cs, Br
00	Which particle may be removed from a stable neutra		-
09.	•	••	d) An electron
00	,	c) A proton	
90.	Visible spectrum of hydrogen shows that it exists in	n two different forms which	in are based on direction of
	spin of the:		
	a) Molecule of hydrogen		
	b) Nuclei of hydrogen atoms		
	c) Electrons of hydrogen		
0.1	d) Atoms of hydrogen molecule	1. 1.1	
91.	Evidence for the existence of different energy levels		15.4. 1 10.
0.5	a) Spectral lines b) Mass defects	c) Atomic numbers	d) Atomic radii
92.	Rutherford's experiment on the scattering of α –par		
	a) Electrons b) Protons	c) Nucleus	d) Neutrons
93.	The longest λ for the Lyman series is : (Given $R_H = 1$		
	a) 1215 Å b) 1315 Å	c) 1415 Å	d) 1515 Å
94.	The angular momentum of electron in <i>n</i> th orbit is given	ven bv:	

	_	_		_	
Gpl		F ~1.		-: -	
เรกเ	1115	rnı	ırn	rın	и
901		Luu			

				Gplus Education
	a) <i>nh</i>	b) $\frac{h}{2\pi n}$	c) $\frac{nh}{2\pi}$	d) $\frac{n^2h}{n^2}$
	-			2π
95.	-		take up only discrete value	
	a) Kinetic energy	b) Angular momentum	c) Momentum	d) Potential energy
96.		light incident on a metallic	c plate is doubled, the <i>KE</i> o	of the emitted photoelectrons
	will be:			
	a) Doubled			
	b) Halved	1 1 11 1 6.1	W.C.	
	_	han doubled of the previou	IS KE	
07	d) Unchanged	C 1		
97.	The mass of one mole o		-) 1 000	1) 0 104
00	a) 0.55 mg	b) 0.008 mg	c) 1.008 mg	d) 0.184 mg
98.	-			he mass of B is five times the
		heir de-Broglie's waveleng		J) 14 - 4
00	a) 2:1	b) 1: 4	c) 1:1	d) l4: 1
99.		ling order of wavelength?	akom	
	- ' '	Balmer series of hydrogen		
		limit, Paschen limit in the l		
		ed colours in solar spectru	m	
100	d) None of the above			
100	The representation of the	ne ground state	1 1 electronic configur	ation of He by box-diagram
	as	atos	>	
	is wrong because it viol a) Heisenberg's uncerta			
	_	theory of angular momenta		
	c) Pauli exclusion princ			
	d) Hund's rule	ipie		
101	•	ation of the element which	is just above the element v	vith atomic number 43 in the
101	same particle group is:	ation of the element which	is just above the element v	vitil atoline number 13 in the
	a) $1s^2$, $2s^22p^6$, $3s^23p^63$	$3d^{10} 4s^14n^6$		
	b) $1s^2$, $2s^22p^6$, $3s^23p^63$	-		
	c) $1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3$	•		
	d) $1s^2$, $2s^22p^6$, $3s^23p^63$			
102	, , ,	ectrons in the orbital of an	atom will be:	
102	a) 3 <i>d</i> 4 <i>s</i> 4 <i>p</i> 4 <i>d</i> 5 <i>s</i>	b) 4s 3d 4p 5s 4d	c) 5s 4p 3d 4d 5s	d) 3 <i>d</i> 4 <i>p</i> 4 <i>s</i> 4 <i>d</i> 5 <i>s</i>
103	•	•		hell is given by $E = -13.58$ /
		ount that an H-atom will ab		
	a) 1.0 eV	b) 3.39 eV	c) 6.79 eV	d) 10.19 eV
104			,	ts ground state is how many
				rom an H atom in its ground
	state?			5
	a) 9	b) 2	c) 3	d) 5
105	. Compared to mass of lig	ghtest nucleus the mass of a	an electron is only:	,
	a) 1/80	b) 1/360	c) 1/1800	d) 1/1000
106	Bragg's equation will ha	ave no solution, if:		
	a) $\lambda > 2d$	b) $\lambda < 2d$	c) $\lambda < d$	d) $\lambda = d$
107	. Size of the nucleus is:			
	a) 10 ⁻¹⁵ cm	b) 10 ⁻¹³ cm	c) 10^{-10} cm	d) 10 ⁻⁸ cm
108	The radius of Bohr's fire	st orbit in H-atom is 0.053 i	nm. The radius of second or	bit in He ⁺ would be:

\sim 1			1		•
Gpl	us	Fa	uc	atı	เดท

			Gplus Education
a) 0.0265 nm	b) 0.0530 nm	c) 0.1060 nm	d) 0.2120 nm
109. Splitting of spectrum line	es in magnetic field is		
a) Stark effect	b) Raman effect	c) Zeeman effect	d) Rutherford effect
110. If the radius of first Bohr	s orbit be a_0 , then the radi	us of third Bohr's orbit wo	uld be:
a) $3 \times a_0$	b) $6 \times a_0$	c) $9 \times a_0$	d) $1/9 \times a_0$
111. Which of the following at	oms has same number of p	rotons and neutrons in its	nucleus?
a) Carbon	b) Deuterium	c) Tritium	d) Nitrogen
112. The ratio of the difference	e in energy between the fir	rst and the second Bohr orb	oit to that between the
second and the third Boh	r orbit is		
a) $\frac{1}{2}$	b) $\frac{1}{3}$	4	d) $\frac{27}{5}$
a) - 2	$\frac{1}{3}$	c) $\frac{4}{9}$	α) 5
113. The wavelength of radiat	ion emitted when electron	falls from 4th Bohr's orbit	to 2nd in H-atom is:
$(R_{\rm H} = -1.09678 \times 10^{-7})$	m^{-1})		
a) 972 nm	b) 486 nm	c) 243 nm	d) 182 nm
114. In an atom with atomic n	umber 29, mass number 59	9, the number of electrons	is:
a) 29	b) 30	c) 40	d) 59
115. The atomic transition give	es rise to the radiation of f	requency 10 ⁴ MHz. The cha	ange in energy per mole of
atoms taking place would	d be		
a) 6.62 × 10 ⁻³⁰ J	b) 5.32×10^{-28} J	c) 6.62×10^{-20} J	d) 3.99 J
116. Uncertainty in the position	on of an electron (mass $= 9$	0.1×10^{-31} kg) moving with	h a velocity 300 ms ⁻¹ ,
accurate upon 0.001% w	ill be		
$(h = 6.63 \times 10^{-34} \text{Js})$			
a) 19.2×10^{-2} m	b) 5.76×10^{-2} m	c) 1.92×10^{-2} m	d) 3.84×10^{-2} m
117. Which of the following is	not possible?		
	b) $n = 2, l = 0, m = -1$	c) $n = 3, l = 0, m = 0$	d) $n = 3, l = 1, m = -1$
118. The dynamic mass of a pl			
a) Zero	b) <i>hc/λ</i>	c) <i>h/cλ</i>	d) h/λ
119. The atomic radius is of the	ne order of :	CATION	
a) 10^{-8} cm	b) 10 ⁸ cm	c) 10^{-10} cm	d) 10 ⁻¹² cm
120. When electronic transition	on occurs from higher ener	gy state to a lower energy	state with energy difference
	electron volts, the waveler		
	b) $\frac{12375}{\Lambda E} \times 10^{-8}$ cm		
$\Delta E = A$	$\Delta E \times 10^{-9} \text{cm}$	$\frac{C}{\Delta E} \times 10^{-10} \text{ m}$	-
121. A Mo atom in its ground	state has a $4d^5$, $5s^1$ configu	ration and a Ag atom $4d^{10}$, $5s^1$ configuration. This is
because a shell which is l	nalf-filled or completely fill	ed is particularly	
a) Strongly exchange des	tabilized	b) Weakly exchange stab	ilized
c) Weakly exchange dest	abilized	d) Strongly exchange des	stabilized
122. The ionisation enthalpy of	of hydrogen atom is 1.312	$ imes$ 10^6 Jmol $^{-1}$. The energy re	equired to excite the electron
in the atom from $n_1 = 1$	to $n_2 = 2$ is		
a) $8.51 \times 10^5 \text{J mol}^{-1}$	b) $6.56 \times 10^5 \text{J mol}^{-1}$	c) $7.56 \times 10^5 \mathrm{J mol^{-1}}$	d) 9.84×10^5 J mol ⁻¹
123. Which of the following se	ets of quantum number is c	orrect for an electron in 4 <i>f</i>	-orbital?
a) $n = 4, l = 3, m = +4, s$	s = +1/2	b) $n = 4, l = 4, m = -4,$	s = -1/2
c) $n = 4, l = 3, m = +1, s$	s = +1/2	d) $n = 3, l = 2, m = -2,$	s = +1/2
124. Number of electrons in -	-CONH ₂ are:		
a) 24	b) 20	c) 22	d) 18
125. The ratio of radii of two	nuclei with mass numbers 2		
a) 1/2	b) 3/4	c) 3/2	d) 2/3
126. The atomic number of Ni	and Cu are 28 and 29 resp	ectively. The electronic cor	nfiguration
$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ re	_		

G	nl	lic	Fd	luc	ati	ion
U	μι	us	LU	uc	uu	UII

			Gplus Education
a) Cu ⁺	b) Cu ²⁺	c) Ni ²⁺	d) Ni
127. The three quan	tum numbers n , l and m are t	he outcome of:	
a) Bohr's atomi	c theory		
b) Solution of S	chrödinger principle		
c) Heisenberg's	uncertainty principle		
d) Aufbau princ	riple		
128. Which has the h	nighest e/m ratio?		
a) He ²⁺	b) H ⁺	c) He ⁺	d) D ⁺
	configuration of an element ir	=	
	$5(n 1)d^x ns^2$. If $n 4$ and $x = 5$	then number of protons in the	e nucleus is
a) 25	b) <724	c) 25	d) 30
_	_	mass 60g moving with a velo	ocity of 10 m/s is approximately
	ant, $h = 6.63 \times 10^{-34} \text{Js}$	46	25
a) 10 ⁻³³ m	b) 10 ⁻³¹ m	c) 10 ⁻¹⁶ m	d) 10 ⁻²⁵ m
	ion for photoelectric effect :		
	on the frequency of incident li	ght	
b) Is same for a			
-	or different metals		
d) None of the a			
132. Line spectra is o		ו יו מי	15.1
a) Atoms	b) Molecules	c) Radicals	d) Ions
a^2 w a^2 w	llowing is the correct form of	a ² w a ² w a ² v	$U = 0$ π^2 m
a) $\frac{0}{32} + \frac{0}{32} + \frac{0}{3$	$-\frac{\partial^2 \Psi}{\partial^2 z} + \frac{8\pi^2 m}{h^2} (E - V)\Psi = 0$	b) $\frac{\partial \Psi}{\partial x^2} + \frac{\partial \Psi}{\partial x^2} + \frac{\partial \Psi}{\partial x^2}$	$\frac{\Psi}{2} + \frac{8\pi^2 \mathrm{m}}{h^2} (E - V)\Psi = 0$
0°x 0°y am2 am2	$0^{2}Z$ n^{2}	$0x^2$ $0y^2$ $0z^3$	
c) $\frac{\partial \Psi}{\partial v^2} + \frac{\partial \Psi}{\partial $	$+\frac{\partial \Psi^2}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\Psi = 0$	d) $\frac{d + \frac{d + + \frac{d + \frac{d + \frac{d + }}{d + \frac{d + }}{d + \frac{d + \frac{d + \frac{d + \frac{d + }}{d + \frac{d + \frac{d + \frac{d + }}{d + \frac{d + \frac{d + }}{d + \frac{d + }}{d + \frac{d + }}{d + \frac{d + }}{d + \frac{d + \frac{d + }}{d + }}}{d + \fracd + d + }}{d + \fracd + d + }}{d + \frac{d + }}{d + \frac{d + }}{d + }}}}{d + \fracd + d + d + d + d + }}{d + }}}}}}}}}}}}}$	$\frac{\Psi}{h^2} + \frac{8\pi^2 m^2}{h^2} (E - V)\Psi = 0$
,			$ n^2$
134. If $n = 0$, the col	rect sequence for filling of elements $(n-1)d \rightarrow (n-2)f$	ections will be.	
,	$(n-1)d \to (n-2)$ $(n-1)d \to np$	200111011	
, ,	$(n-1)a \rightarrow np$ $(n-2)f \rightarrow np$		
, , ,	(n-1)d		
	ot true for the cathode rays?		
a) They have ki	•		
	ertain substances to show flu	orescence	
c) They travel i			
	ctromagnetic waves		
136. Which of the fol	llowing ions has electronic co	nfiguration [Ar] $3d^6$:	
a) ₂₇ Ni ³⁺	b) ₂₅ Mn ³⁺	c) ₂₆ Fe ³⁺	d) ₂₇ Co ³⁺
137. In an atom, an e	electron is moving with a spec	ed of 600 m/s with an accura	cy of 0.005%. Certainity with
1 2 1 71 97	. (.) 1	$h = 6.6 \times 10^{-34}$	4 kg m 2 s $^{-1}$,
which the posit	ion of the electron can be loca	$\frac{1}{1}$ mass of electron, $e_{\rm m}$	$= 9.1 \times 10^{-31} \text{kg}$
a) 1.52×10^{-4} r		c) 1.92×10^{-3} m	d) 3.84×10^{-3} m
=	ound state of Cr atom $(Z = 2)$	4). The numbers of electrons	with the azimuthal quantum
-	and 2 are, respectively	•	•
a) 12 and 4	b) 12 and 5	c) 16 and 4	d) 16 and 5
•	s:(a and b are constants, Z =	-	-
a) $\sqrt{\mathbf{v}} = aZ$	b) $v = c/\lambda$	c) $2d \sin \theta = n\lambda$	$d) \sqrt{v} = a(Z - b)$

GPLUS EDUCATION WEB: WWW.GPLUSEDUCATION.ORG **PHONE NO: 8583042324** Page | 9

 $140. \, \text{From the discharge tube experiment, it is concluded that:}$

a) Mass of a proton is in fraction

b)	Matter	contains	electrons
\sim	1.Iaccc1	Contains	CICCUI OIID

- c) Nucleus contains positive charge
- d) Positive rays are heavier than protons
- 141. Which atom has as many as *s*-electrons as *p*-electrons?

142. The electronic configuration of Pd^{2+} (at.no.46)is:

a) [Kr]4d⁸

b) [Kr] $5s^24d^6$

c) $[Kr]4d^6$

d) $[Kr]4d^85s^2$

143. When α —particles are sent through a thin metal foil, most of them go straight through the foil because

- a) Most part of the atom is empty space
- b) Alpha particles move with high speed
- c) Alpha particles are much heavier than electrons
- d) Alpha particles are positively charged
- 144. A neutral atom of an element has 2K, 8L, 11M and 2N electrons. Total number of electrons with l=2 will be:

145. Mosley's name is connected with the discovery of:

a) Protons

b) Neutrons

c) Atomic number

d) Atomic weight

146. For a Bohr atom angular momentum M of the electron is (n = 0, 1, 2, ...)

a)
$$\frac{nh^2}{4\pi}$$

b)
$$\frac{n^2h^2}{4\pi}$$

c)
$$\frac{\sqrt{\pi h^2}}{4\pi}$$

d)
$$\frac{nh}{2\pi}$$

147. When 3d-orbital is complete, the newly entering electron goes into:

c) 4
$$\mu$$

148. Which of the followings sets of quantum numbers represents the highest energy of an atom?

a)
$$n = 3, l = 1, m = 1, s = +1/2$$

b)
$$n = 3, l = 2, m = 1, s = +1/2$$

c)
$$n = 4, l = 0, m = 0, s = +1/2$$

d)
$$n = 3, l = 0, m = 0, s = +1/2$$

- 149. When an electron jumps from L-level to M-level, there occurs:
 - a) Emission of energy
 - b) Absorption of energy
 - c) Emission of γ -radiations
 - d) Emission of X-rays
- 150. If the kinetic energy of an electron is increased four times, the wavelength of the de-Broglie wave associated with it would becomes

TRIUS EDUCATION

b)
$$\frac{1}{4}$$
 times

151. The work function (Φ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metals is:

M	L	N	K	M	С	Α	Fe	P	W
et	i	a		g	u	g		t	
al									
Ф(е	2	2.	2	3.	4.	4	4.7	6	4.
		3		7	8				7
	4		2			3		3	5

- a) 2
- b) 4
- c) 6
- d) 8
- 152. "Positronium" is the name given to an atom-like combination formed between:
 - a) A positron and a proton
 - b) A positron and a neutron
 - c) A positron and α -particle

			Gplus Education
d) A positron and an el	ectron		
153. The nucleus of helium	contains:		
a) Four protons			
b) Four neutrons			
c) Two neutrons and t	-		
d) Four protons and tv			
154. Photoelectric effect she			
a) Particle-like behavi	-		
b) Wave-like behaviou	=		
c) Both wave-like and	=	_	
d) Neither wave-like a	=	iour of light	
155. When high speed elect	-		
a) Only heat is produce			
b) Only continuous X-r	-	1	
c) Only continuous and			1
		tinuous and characteristic X-ray	
		mass 1 g and velocity 100 m/s	
a) 6.63×10^{-33} m	b) 6.63×10^{-34} m	-	d) 6.65×10^{-35} m
157. After np^6 electronic co	-		J) N
a) $(n+1)d$ 158. Choose the incorrect s	b) $(n+1)s$	c) $(n+1)f$	d) None of these
		oon the azimuthal quantum nur	nhor
		nds upon the magnetic quantum	
		oital of multi-electron atom dep	
number	etron in an atomic ort	ortal of mater-electron atom dep	ends on principal quantum
	nerate atomic orbitals	s of one type depends on the va	lue of azimuthal and magnetic
quantum numbers			ide of azimathar and magnetic
159. Photoelectric effect car	n be caused by :	BUCATION	
a) Visible light but not		2007112011	
b) Gamma-rays but no	•		
c) Ultraviolet light only	= =		
d) Visible light, ultravi	•	amma rays also	
160. The number of neutron			
a) 39	b) 19	c) 20	d) None of these
161. Deflection back of a few	w particles on hitting t	-	
a) Nucleus is heavy		S	
b) Nucleus is small			
c) Both (a) and (b)			
d) Electrons create hin	derance in the mover	nent of α- particles.	
		rons in L -shell and 6 electrons	s in M -shell. The number of s -
electrons present in th	e element is:		
a) 10	b) 7	c) 6	d) 4
163. Which orbital is repres	sented by Ψ 4, 2, 0 ?		
a) 4 <i>d</i>	b) 3 <i>d</i>	c) 4p	d) 4 <i>s</i>
164. The electronic configu	ration of a dipositive i	on M^{2+} is 2, 8, 14 and its mass i	number is 56. The number of
neutrons present is			
a) 32	b) 42	c) 30	d) 34
165. The angular momentum	m of an electron in 2 $\it p$	-orbital is :	

G	اط	us	Ed	uc	at	ior	7
_	γ.	u	_~	uc	ut		•

			Gpius Education
a) $\frac{h}{2\pi}$	b) $\frac{h}{\sqrt{2\pi}}$	c) $\frac{2h}{\pi}$	d) None of these
Δn	V 211	$\frac{\omega}{\pi}$	
166. Which set has the same i			
a) C, Cu ²⁺ , Zn	b) Cu ²⁺ , Fe ²⁺ , Ni ²⁺	c) S ²⁻ , Ni ²⁺ , Zn	d) None of these
167. The electronic configura			
a) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$		b) $1s^2$, $2s^2$, $2p^6$, $3s^2$	
c) $1s^2, 2s^2, 2p^6$		d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$	
168. The Bohr's orbit radius f	• • •	= 1) is approximately 0.53	Å. The radius for the first
excited state $(n = 2)$ orb	_	ō	9
a) 0 . 27 Å	b) 1.27 Å	c) 2.12 Å	d) 3.12 Å
169. The threshold frequency	y of a metal is $4 \times 10^{14} \text{s}^{-1}$.	The minimum energy of p	photon to cause photoelectric
effect is:	10		
	b) 1.4×10^{-18} J	c) 3.4×10^{-19} J	d) 2.64×10^{-19} J
170. Which wavelength falls i		0	0.0
a) 10,000 Å	b) 1000 Å	c) 1Å	d) 10 ⁻² Å
171. Choose the incorrect state			
	diation whose predominan	= = =	temperature
	of a wave is proportional to	o its frequency	
c) Photons are quanta of	_		
	constant is energy depende		
172. What is the energy (in e		etron from $n=1$ to $n=2$ s	state in hydrogen atom?
(n=principle quantum n			33
a) 13.6	b) 3.4	c) 17.0	d) 10.2
173. Of the following transition	ons in hydrogen atom, the	one which gives an absorp	otion line of lowest frequency
is:	1) 2, 0		D 0.
a) $n = 1$ to $n = 2$	b) $n = 3$ to $n = 8$	c) $n = 2$ to $n = 1$	d) $n = 8$ to $n = 3$
174. Which is not in accordan	ce to autoau principie?	CATION	2
a) 2s 2p 1 1 1	b) 2s 2p 4p	c) 2s 2p	d) 2s 2p 2p
175. Which of the following h	-		1) C+
a) Zn ⁺	b) Fe ²⁺	c) Ni ²⁺	d) Cu ⁺
176. The scientist who propos		_	=-
a) Max Planck	b) Niels Bohr	c) De-Broglie	d) Heisenberg
177. The energy per mole of p			
a) $3.0 \times 10^{-12} \text{erg}$	b) $4.0 \times 10^{-12} \text{erg}$	c) $5.0 \times 10^{-12} \text{erg}$	d) $6.0 \times 10^{-12} \text{erg}$
178. A particle <i>A</i> moving with	· · · · · · · · · · · · · · · · · · ·		A". For particle B with mass
-	5% of A , calculate the de-Bi	-	1) 0 40 40
a) 3 A°	b) 5.33 A°	c) 6.88 A°	d) 0.48 A°
179. The correct designation			
a) $3d$	b) $4f$	c) 5p	d) 6s
180. The energy of the electro	on in first bonr's orbit is — I	13.6ev. The energy of the e	nectron in its first excited
state is	b) 27.0 aV	a) (0 aV	4) 10.2 av
a) -3.4 eV	b) -27.8 eV	c) -6.8 eV	d) -10.2 eV
181. The statement that does	•	or atom, is	
	ns in the orbit is quantized	c in lawact anarmy state	
-	bit nearest to the nucleus i lifferent orbits around the i		
•	ergy during revolution due		phic forces of attraction
182 The ratio of radius of III		-	IDIC IDICES DI ALLI ACCIDII

Gplus	Fau	ICATIO	r

-3.2.4	-) 0 . 16	dpius Education
a) 3:4 b) 3:8	c) 9:16	d) 8 : 9
183. In the Schrödinger wave equation, ψ represents:	a) Amplitude function	d) All of those
a) Orbitalsb) Wave function184. Which diagram best represents the appearance of	c) Amplitude function	d) All of these
	the fine spectrum of atomic	. Hydrogen in the visible
region? Increasing wave length		
a) —	b)	
c)	d)	
185. If the electron of a hydrogen atom is present in the	e first orbit, the total energy	of the electron is
a) $\frac{-e^2}{r}$ b) $\frac{-e^2}{r^2}$	$-e^2$	d) $\frac{-e^2}{2r^2}$
,	c) $\frac{-e^2}{2r}$	$\frac{dJ}{2r^2}$
186. What is the charge in coulomb on Fe ³⁺ ion?		
a) 4.8×10^{-19} C b) 1.6×10^{-19} C	c) 3.2×10^{-19} C	d) 6.4×10^{-19} C
187. The ground state term symbol for an electronic sta	ate is governed by	
a) Hund's rule	b) Heisenberg's principl	le
c) Aufbau principle	d) Pauli's exclusion prin	ciple
188. The number of elliptical orbits, including circular	orbits in the M-shell of an at	tom is:
a) 3 b) 4	c) 2	d) 1
189. Wave mechanical model of the atom depends upor	n:	
a) de Broglie concept of dual nature of electron		
b) Heisenberg's uncertainty principle	2	
c) Schrödinger wave equation		
d) All of the above		
190. The velocity of a photon is:		
a) Independent of its wavelength	CATION	
b) Depends on its wavelengthc) Depends on its source	CATION	
d) Equal to square of its amplitude		
191. The frequency of radiation emitted when the elect	ron falls from $n-4$ to $n-1$ i	n a hydrogen atom will be
(Given, ionisation energy of	1011 14113 110111 11—4 to 11—1 1	n a nyurogen atom win be
103 H=2.18 × 10 ⁻¹⁸ J atom ⁻¹ and $h = 6.625 \times 10^{-18}$)-34 Is)	
a) 1.54×10^{15} s ⁻¹ b) 1.03×10^{15} s ⁻¹	c) $3.08 \times 10^{15} \text{s}^{-1}$	d) $2.00 \times 10^{15} \text{s}^{-1}$
192. A node is a surface on which the probability of fine	=	u) 2.00 × 10 3
a) Zero b) > 1	c) > 10	d) > 90
193. In photoelectric effect, the photo-current:	c) > 10	4) > 30
a) Increases with increase of frequency of inciden	t nhoton	
b) Decreases with increase of frequency of incider	=	
c) Does not depend on the frequency of photon bu	-	sity of incident light
d) Depends both on intensity and frequency of the	= = =	
194. Possible number of orientations of a subshell is:	Ī	
a) <i>l</i> b) <i>n</i>	c) 2 <i>l</i> + 1	d) n^2
195. The orientation of an atomic orbital is governed by	*	•
a) Magnetic quantum number	•	
b) Principal quantum number		
c) Azimuthal quantum number		
d) Spin quantum number		
196. The ratio of the radius of the orbit for the electr	on orbiting the hydrogen r	nucleus to that of an electron

orbiting a deuterium nu	ucleus is:		•
a) 1 : 1	b) 1 : 2	c) 2:1	d) 1:3
197. Which of the following	sets of quantum numbers is	correct for an electron in 4	f-orbital?
a) $n = 3, l = 2, m = -2$	$2, s = +\frac{1}{2}$		
b) $n = 4, l = 4, m = -4$	$k, s = -\frac{1}{2}$		
c) $n = 4, l = 3, m = +1$	$1, s = +\frac{1}{2}$		
d) $n = 4, l = 3, m = +4$	$4, s = +\frac{1}{2}$		
198. The electronic energy leads			led:
a) Orbitals	b) Orbits	c) Rydberg levels	d) Ground states
199. A photoelectric cell is a	device, which :		
a) Converts light into e	lectricity		
b) Converts electricity i	into light		
c) Stores lights			
d) Stores electricity			
200. An f -shell containing 6	unpaired electrons can excl	nange	
a) 6 electrons	b) 9 electrons	c) 12 electrons	d) 15 electrons
201. Mg ²⁺ is isoelectrionic v			
a) Cu ²⁺	b) Zn ²⁺	c) Na ⁺	d) Ca ²⁺
202. The first orbital of H is	_		
$\psi = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$, v	vhere a ₀ is Bohr's radius. T	The probability of finding	the electron at a distance r ,
from the nucleus in the	region dV is:		
a) $\psi^2 dr$	b) $\int \psi^2 4\pi r^2 d$ ν	c) $\psi^2 4\pi r^2 dr$	d) $\int \psi dv$
203. The correct statement a	about proton is	CAHON	
a) It is a nucleus of deu	terium	b) It is an ionized hydrog	gen atom
c) It is an ionized hydro	_	d) It is an $lpha$ - particle	
204. The energy ΔE corresp	onding to intense yellow line		
a) 2.10 eV	b) 43.37 eV	c) 47.12 eV	d) 2.11 kcal
205. One electron volt is:			
a) 1.6×10^{-19} erg	b) 1.6×10^{-12} erg	,	d) 1.6×10^8 erg
206. The quantum number t	•	•	
a) <i>l</i>	b) <i>s</i>	c) <i>n</i>	d) <i>m</i>
207. The de-Broglie waveler		-	
a) $\lambda = \frac{12.3\text{A}^{\circ}}{\sqrt{V}}$	b) $\lambda = \frac{0.286}{\sqrt{V}} \text{A}^{\circ}$	c) $\lambda = \frac{0.101}{\sqrt{V}} \text{A}^{\circ}$	d) $\lambda = \frac{0.856}{\sqrt{V}} \text{A}^{\circ}$
208. Calculate the waveleng	th (in nanometer) associate	d with a proton moving at 1	$1.0 \times 10^{3} \text{ms}^{-1}$ (Mass of
proton = 1.67×10^{-27}	kg and $h = 6.63 \times 10^{-34} \text{ Js}$		
a) 0.032 nm	b) 0.40 nm	c) 2.5 nm	d) 14.0 nm
209. The number of waves in	n an orbit are		
a) n^2	b) <i>n</i>	c) <i>n</i> – 1	d) n – 2
210. Which of the following	electron transition in hydro	gen atom will require large	st amount of energy?
a) From $n = 1$ to $n = 2$	_	b) From $n = 2$ to $n = 3$	
c) From $n = \infty$ to $n = 1$	1	d) From $n = 3$ to $n = 5$	
211. The principal quantum		values ranging from:	
a) 0 to 10	b) 1 to ∞	c) 1 to $(n = l)$	d) 1 to 50

		Gpius Education
212. Electrons will first enter into the set of quantum		
a) $n = 5, l = 0$ b) Both possible	c) $n = 3, l = 2$	d) Data insufficient
213. The relationship between the energy E_1 of the radiation with a wavelength 16000Å is	adiation with a wavelength 8	book and the energy E_2 of the
a) $E_1 = 6E_2$ b) $E_1 = 2E_2$	c) $E_1 = 4E_2$	d) $E_1 = 1/2E_2$
214. Which combinations of quantum numbers n, l, n	a and s for the electron in an	atom does not provide a
permissible solution of the wave equation?		
a) 3, 2, 1, $\frac{1}{2}$ b) 3, 1, 1, $-\frac{1}{2}$	c) 3.3.1. $-\frac{1}{-}$	d) 3, 2, -2, 1
	4	L
215. What is the lowest energy of the spectral line en $(h=Planck's constant, c=velocity of light, R=Ry)$		in the Lyman series?
·		7hcR
a) $\frac{5hcR}{36}$ b) $\frac{4hcR}{3}$	c) $\frac{3hcR}{4}$	d) $\frac{7hcR}{144}$
216. Which is not electromagnetic radiation?	4	144
a) Infrared rays b) X-rays	c) Cathode rays	d) γ-rays
217. Which one of the following sets of quantum num	-	,
		4
a) $n = 4, l = 0, m = 0, s = +\frac{1}{2}$	b) $n = 3, l = 1, m = 1, s$	
c) $n = 3, l = 2, m = -2, s = +\frac{1}{2}$	d) $n = 3, l = 0, m = 0, s$	$s = +\frac{1}{2}$
218. Which consists of particle of matter?		Z
a) Alpha rays b) Beta rays	c) Cathode rays	d) All of these
219. If λ_1 and λ_2 are the wavelength of characterist		-
between them is:		
a) $\lambda_1 = 1/\lambda_2$ b) $\lambda_1 = \lambda_2$	c) $\lambda_1 > \lambda_2$	d) $\lambda_1 < \lambda_2$
220. Which best describe the emission spectra of ato	mic hydrogen?	
a) A series of only four lines		
b) A discrete series of lines of equal intensity an	d equally spaced with respec	t to wavelength
c) Several discrete series of lines with both inte	nsity and spacings between li	nes decreasing as the wave
number increase within each series		
d) A continuous emission of radiation of all freq	uencies	
221. In the ground state of the H-atom, the electron is	5:	
a) In the second shell		
b) In the nucleus		
c) Nearest to the nucleus		
d) Farthest from the nucleus		
222. Atoms consist of electrons, protons and neutro		
attributed to the electrons was doubled, the atom	· ·	•
a) Same b) Doubled	c) Halved	d) Reduced by 25%
223. The number of electrons in a neutral atom of an	=	13.73
a) Atomic weight b) Atomic number	c) Equivalent weight	d) Electron affinity
224. Which particle contains 2 neutrons and 1 protor		D 52
a) $_1\mathrm{H}^2$ b) $_2\mathrm{He}^4$	c) ₁ T ³	d) $_1D^2$
225. The highest number of unpaired electrons are in		
a) Fe	b) Fe ²⁺	<i>c</i>
c) Fe ³⁺		er of unpaired electrons
226. Maximum number of electrons in an orbit is give	_	d) None of these
a) n^2 b) $2n^2$	c) $n^2/2$	d) None of these
227. The wave nature of electron is verified by a) De-Broglie	b) Davisson and Germe	r
at 17C-1710211C	שווט מענט עו ט ayıbayın anu tieline	1

				Gpius Educatioi
-	utherford		d) All of these	
			of an electron is only (app.)	
a) 1		b) 1/800	c) 1/1800	d) 1/2800
		0.	have identical ground state	S
-	t ⁺ and He ⁺	b) Cl [–] and Ar	c) Na ⁺ and K ⁺	d) F ⁺ and Ne
		tals in a shell with principa	-	
a) 2:		b) $2n^2$	c) n^2	d) $n + 1$
	_		part of Bohr's model of hyd	rogen atom?
_		s in the orbit is quantised		
_		oit nearest the nucleus has	- -	
-		fferent orbits around the		
-	-	•	orbit cannot be determined	simultaneously
	etration power of pro			
=	reater than <i>e</i>	b) Less than electron	c) Greater than 'n'	d) None of these
233. Boh	r's theory is applicab			
a) H		b) Li ²⁺	c) He ²⁺	d) None of these
		mbers is possible for the l	ast electron of Mg ⁺ ion?	
-	= 3, l = 2, m = 0, s =	-		
-	= 2, l = 3, m = 0, s = 0	•		
-	= 1, l = 0, m = 0, s = 0	•		
-	= 3, l = 0, m = 0, s = 0			
	electronic configurat			
	$[3d^6, 4s^2]$	b) [Ar]3 d^7 , 4 s^2	c) $[Ar]3d^5, 4s^2$	
236. Whi	ch of the following ra	dial distribution graphs co	orrespond to $n = 3$, $l = 2$ for	r an atom?
r ² a)	Ψ^2 a_0	b) $r^2 \Psi^2$ a_0	c) $r^2\Psi^2$ a_0	d) $r^2 \Psi^2 \frac{1}{a_0}$
237 In w	hich orbital electron	is most tightly bound to tl	he nucleus?	, and the second
a) 5.		b) 4 <i>p</i>	c) 4d	d) 5 <i>d</i>
,	is isoelectronic with	<i>b</i>) 1 <i>p</i>	c) iu	uj ou
a) N		b) Ar	c) Mg ²	d) Kr
=	eshold wavelength de	<u>-</u>	o) 116	w)
	requency of incident			
•	elocity of electrons			
-	ork function			
=	one of the above			
-		y quantum numbers		
	n = 4, l = 1	<i>y</i> 1		
	I. $n = 4, l = 0$			
	II. $n = 3, l = 2$			
	V. $n = 2, l = 1$			
		increasing energy from th	e lowest to highest as	
	/ <ii<iii<i< td=""><td>b) II<iv<i<iii< td=""><td>c) I<iii<ii< td=""><td>d) III<i<iv<ii< td=""></i<iv<ii<></td></iii<ii<></td></iv<i<iii<></td></ii<iii<i<>	b) II <iv<i<iii< td=""><td>c) I<iii<ii< td=""><td>d) III<i<iv<ii< td=""></i<iv<ii<></td></iii<ii<></td></iv<i<iii<>	c) I <iii<ii< td=""><td>d) III<i<iv<ii< td=""></i<iv<ii<></td></iii<ii<>	d) III <i<iv<ii< td=""></i<iv<ii<>
-			com is -13.6 eV. The possib	•
	e excited state of Li ²		1	U
	122 . 4 eV	b) 30.6 eV	c) -30.6 eV	d) 13.6 eV
,		-	-	-

242. When the azimutha	l quantum number has the valu	e of 2, the number of or	bitals possible are
a) 7	b) 5	c) 3	d) 0
243. Compared to the lig	htest atom the heaviest atom w	eighs:	
a) 200 times	b) 238 times	c) 92 times	d) 16 times
244. If the following part	ticles travel with equal speed, th	nen for which particle th	ne wavelength will be longest?
a) Proton	b) Neutron	c) α -particle	d) β -particle
245. The orbital cylindri	cally symmetrical about x -axis i	is:	
a) p_z	b) $p_{\mathcal{Y}}$	c) p_x	d) d_{xz}
246. The orbital with ma	ximum number of possible orie	entations is:	
a) <i>s</i>	b) <i>p</i>	c) <i>d</i>	d) <i>f</i>
247. Einstein's photoeled	ctric equation states that $E_k = h$	v - W	
Here, E_k refers to			
a) Kinetic energy of	fall ejected electrons	b) Mean kinetic ener	gy of emitted electrons
c) Minimum kinetic	energy of emitted electrons	d) Maximum kinetic	energy of emitted electrons
248. The orbital closest t	to the nucleus is:		
a) 7 <i>s</i>	b) 3 <i>d</i>	c) 6 <i>p</i>	d) 4 <i>s</i>
249. Isoelectronic pair a			
a) Ca and K	b) Ar and Ca ²⁺	c) K and Ca ²⁺	d) Ar and K
250. We can say that the	energy of a photon of frequency	y v is given by $E = hv$, v	where h is Planck's constant. The
momentum of a ph	noton is $p = h/\lambda$, where λ is the	he wavelength of phot	on. Then we may conclude that
velocity of light I eq	ual to:		
a) $(E/p)^{1/2}$	b) <i>E/p</i>	c) <i>Ep</i>	d) $(E/p)^2$
251. Uncertainty in posit	tion of a particle of 25 g in space	e is 10 ^{–5} m. Hence, unce	rtainty in velocity (ms ⁻¹) is
(Planck's constant h	$n = 6.6 \times 10^{-34} \text{Js}$		
a) 2.1×10^{-28}	b) 2.1×10^{-34}	c) 0.5×10^{-34}	d) 5.0×10^{-24}
252. The mass of a neutr			
a) 10^{-23} kg	b) 10 ⁻²⁴ kg	c) 10 ⁻²⁶ kg	d) 10 ^{–27} kg
253. The de Broglie wave	elength of a 66 kg man sking do		at 1×10^3 m sec ⁻¹ is:
a) 1×10^{-36} m	b) 1×10^{-37} m	c) 1×10^{-38} m	d) 1×10^{-39} m
254. The Z —component	of angular momentum of an ele	ectron in an atomic orbi	tal is governed by the
a) Magnetic quantu	m number	b) Azimuthal quantu	m number
c) Spin quantum nu	ımber	d) Principal quantun	n number
255. An electron with va	lues 4 , 2 , -2 and $+1/2$ for the s	et of four quantum num	bers n, l, m_l and s respectively,
belongs to			
a) 4s-orbital	b) 4 <i>p</i> -orbital	c) 4 <i>d</i> -orbital	d) $4f$ -orbital
256. Consider the follow	ing statements :		
1.Electron density i	n xy plane in $3d_{x^2-y^2}$ orbital is	zero	
2.Electron density i	n xy plane in $3d_{z^2}$ orbital is zer	0	
	y one spherical node		
4 For $2p_z$ orbital yz	s is the nodal plane		
The correct stateme	ents are		
a) 2 and 3	b) 1,2,3,4	c) Only 2	d) 1 and 3
257. The maximum prob	ability of finding electron in the	$ed_{\chi\gamma}$ orbital is:	
a) Along the <i>x</i> -axis		,	
b) Along the <i>y</i> -axis			
	° from the <i>x</i> -and <i>y</i> -axes		
-	° from the <i>x</i> -and <i>y</i> -axes		
	atm of an element cannot have:		

a) The same principle quantum number

- b) The same azimuthal quantum number c) The same magnetic quantum number d) An identical set of quantum numbers 259. The energy of electromagnetic radiation depends on: a) Amplitude and wavelength
 - - b) Wavelength
 - c) Amplitude
 - d) Temperature of medium through which it passes
- 260. Correct electronic configuration of Cu²⁺ is:
 - a) $[Ar]3d^8, 4s^1$
- b) $[Ar]3d^{10}, 4s^24p^1$
- c) $[Ar]3d^{10}, 4s^1$ d) $[Ar]3d^9$

- 261. The difference between ions and atoms is of:
 - a) Relative size
- b) Configuration
- c) Presence of charge
- d) All of these

- 262. Electronic configuration of H⁻ is:
 - a) $1 s^{0}$

b) $1 s^{1}$

c) $1 s^2$

- d) $1s^1$, $2s^2$
- 263. The ground state term symbol for an electronic state is governed by
 - a) Heisenberg's principle

b) Hund's rule

c) Aufbau principle

- d) Pauli exclusion principle
- 264. The electronic transitions from n=2 to n=1 will produce shortest wavelength in (where n=principle quantum state)
 - a) Li²⁺

b) He⁺

c) H

- d) H+
- 265. The atomic number of an element is 17. The number of orbitals containing electron pairs in the valency shell is:
 - a) 8

b) 2

c) 3

- d) 6
- 266. The number of electrons in an atom with atomic number 105 having (n + l) = 8 are:
 - a) 30

b) 17

c) 15

- d) Unpredictable
- 267. Three isotopes of an element have mass numbers, m, (m + 1) and (m + 2). If the mean mass number is (m + 0.5) then which of the following ratios may be accepted for m, (m + 1), (m + 2) in that order:
 - a) 1:1:1
- b) 4:1:1 c) 3:2:1
- d) 2 : 1 : 1
- 268. According to Bohr's theory the radius of electron in an orbit described by principle quantum number nand atomic number *Z* is proportional to :
 - a) Z^2n^2

- 269. The radius of the first Bohr orbit of hydrogen atom is 0.529 Å. The radius of the third orbit of H⁺ will be
 - a) 8.46 Å
- b) 0.705 Å
- c) 1.59 Å
- d) 476 Å
- 270. The de Broglie wavelength associated with a material particle is:
 - a) Inversely proportional to momentum
 - b) Inversely proportional to its energy
 - c) Directly proportional to momentum
 - d) Directly proportional to its energy
- 271. Energy levels A, B, C of a certain atom corresponds to increasing values of energy, i.e., $E_A < E_B < E_C$. If λ_1,λ_2 and λ_3 are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct?

- a) $\lambda_3 = \lambda_1 + \lambda_2$
- b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$
 - c) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$

			Opius Luucution
272. Naturally occurring ele		.	1) Y
a) Isotone	b) Isobars	c) Isotopes	d) Isomers
the following subshells		(₁₈ Ar)4 <i>s</i> ² 3 <i>d</i> ¹⁰ 4 <i>p</i> °, the 37	th electron will go into which of
a) 4 <i>f</i>	b) 4 <i>d</i>	c) 3 p	d) 5 <i>s</i>
274. 1 fermi is equal to :			
a) 10 ^{–13} cm	b) 10 ⁻¹⁰ cm	c) 10^{-4} cm	d) 10 ⁻⁸ cm
275. When an electron mov	es from higher orbit to a lo	wer orbit is produced	
a) Absorption spectra	b) Emission spectra	c) α -particle	d) None of these
276. A photon in X region is	s more energetic than in the	e visible region X is:	
a) Infrared	b) Ultraviolet	c) Microwave	d) Radiowave
277. According to aufbau pr	rinciple, the correct order o	of energy of $3d$, $4s$ and $4p$ -	orbitals is
a) $4p < 3d < 4s$	b) $4s < 4p < 3d$	c) $4s < 3d < 4p$	d) $3d < 4s < 4p$
278. The total number of va	llency electrons for NH ₄ is	•	
a) 9	b) 8	c) 6	d) 11
279. According to Bohr's m	•	,	,
a) Total energy of the		b) Angular momentu	m of electron is quantised
c) Both (a) and (b)	1	d) None of the above	•
280. The H-spectrum show		,	
a) Heisenberg's uncert	ainty principle	b) Diffraction	
c) Polarisation	emis) principio	d) Presence of quanti	ised energy level
281. The total number of pr	otons present in all the ele		
a) 300	b) 350	c) 465	d) 450
282. Time period of a wave			u) 100
a) $5 \times 10^{-3} \text{s}^{-1}$	b) $2 \times 10^2 \text{ s}^{-1}$	c) $23 \times 10^3 \text{ s}^{-1}$	d) $5 \times 10^2 \text{s}^{-1}$
•		•	(p), neutron (n) and alpha
			(p), (p) and alpha
particle (α) will be	b) <i>e, p, n, α</i>	ICATION	15
a) n, α, p, e		c) n, p, e, α	d) n, p, α, e
284. Orbitals processing the	••		
a) Hybrid orbitals	b) Valency orbitals	c) <i>d</i> -orbitals	d) Degenerate orbitals
285. Which set has the same	= '		
a) N, P, V	b) Na, P, Cl	c) Na ⁺ , Mg ²⁺ , Al	d) Cl ⁻ , Fe ³⁺ , Cr ³⁺
286. Wavelength of a photo		\times 10 ⁻³⁴ Js. The momentu	m of photon is:
a) $3.3 \times 10^{-23} \text{ kg m s}^{-1}$			
b) $3.3 \times 10^{22} \text{ kg m s}^{-1}$			
c) 1.452×10^{-44} kg m			
d) $6.89 \times 10^{43} \text{ kg m s}^{-1}$	1		
287. The atomic number of	an element is 35 and its ma	ass is 81. The number of e	electrons in its outermost shell is
a) 3	b) 5	c) 7	d) 9
288. According to Dalton's a	atomic theory, the smallest	particle which is capable	of independent existence is:
a) Element	b) Atom	c) Molecule	d) Ion
289. The possibility of findi	ng an electron in an orbita	l was conceived by:	
a) Rutherford	b) Bohr	c) Heisenberg	d) Schrödinger
290. Which statement is/ar	e correct?		
Volume of proton is	approximately		
a) $(4/3 \pi r^3) = 1.5 \times 1$	10^{-38} cm^3		
b) The radius electron			
c) The density of nucle			
d) All of the above	<i>5.</i>		
•			

291. X-rays cannot penetra	ate through a sheet of:		
a) Wood	b) Paper	c) Aluminium	d) Lead
292. How many electrons of	can fit into the orbitals that	comprise the 3rd quantum	n shell?
a) 2	b) 8	c) 18	d) 32
293. The total values of ma	ignetic quantum number of	f an electron when the valu	te of $n=2$ is:
a) 9	b) 6	c) 4	d) 2
294. Which transition in th	e hydrogen atomic spectru	ım will have the same wave	elength as the transition, $n=4$ to
n=2 of He ⁺ spectrum			
a) $n = 4$ to $n = 3$	b) $n = 3$ to $n = 2$	c) $n = 4$ to $n = 2$	d) $n = 2$ to $n = 1$
295. According to $(n + l)$ r			•
a) $(n-1)d$	b) $(n + 1)s$	c) nd	d) $(n+1)p$
· ' '	avelength of the Lyman ser	ries for the hydrogen atom	is 912 Å, then the series limit of
	llmer series of the hydroge		,
a) 912 Å	b) 912 × 2 Å	c) 912 × 4 Å	d) 912/2 Å
297. The best metal to be u	•	.,	,,
a) Potassium	b) Sodium	c) Cesium	d) Lithium
-	-	•	rgy and V as potential energy is:
		2 45 15 141 5 161	gy and v as potential energy is:
a) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}$	$+\frac{\partial h}{mh^2}(E-V)\Psi=0$		
b) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}$	$+\frac{\partial H}{\partial r^2}(E-V)\Psi=0$		
$\partial^2 \Psi \partial^2 \Psi \partial^2 \Psi$	$8\pi^2m$		
c) $\frac{\partial^{-1}}{\partial x^2} + \frac{\partial^{-1}}{\partial x^2} + \frac{\partial^{-1}}{\partial z^2}$	$+\frac{8\pi^2 m}{h^2}(E-V)\Psi=0$	>	
$\frac{\partial x}{\partial y} = \frac{\partial y}{\partial z}$	$g_{\pi m^2}$		
d) $\frac{d^{2} + \frac{d^{2} + +$	$+\frac{8\pi m^2}{h}(E-V)\Psi=0$		
on oy oz	7.0		
299. Electronic configurati a) $1s^1$		a) 1 a1 2 a1	d) None of these
	b) $1s^2$, $2s^2$ specific charge for a cathod	C) 15-, 25-	d) None of these
•	llue when the discharge tub	be is filled with n_2	
b) Is constant	mic number of gas in the d	iaahanga tuha	
	· ·	· ·	
	mic number of an element $_{ m m}$ is $3 imes10^{-12}$ ergs. What is		
$(h = 6.62 \times 10^{-27} \text{erg})$	•	s its wavelength in iiii:	
`	$s, c = 3 \times 10^{\circ} \text{ cm/s}$ b) 1324	c) 66.2	4) 6 62
a) 662	,	,	d) 6.62 aree quantum numbers will
	in the absence of magnetic	•	free quantum numbers win
(A) $n = 1, l = 0, m =$	9	and electric fields:	
(B) $n = 2, l = 0, m =$			
(B) $n = 2, l = 0, m = 0$ (C) $n = 2, l = 1, m = 0$			
(D) $n = 3, l = 2, m = 1$			
(E) $n = 3, l = 2, m = 0$			
* *	J		
a) (D) and (E)			
b) (C) and (D)			
c) (B) and (C)			
d) (A) and (B) 303. Zeeman effect refers t	o the		
		im in the presence of ex	tornal alastrostatis field
aj spirtung up oi the i	ines in an emission spectru	am m uie presence or an ex	ternar electrostatic neid

b) Random scattering of light by colloidal particles

- c) Splitting up of the lines in an emission spectrum in a magnetic field
- d) Emission of electrons from metals when light falls upon them
- 304. Bohr's radius of 2nd orbit of Be³⁺ is equal to that of
 - a) 4th orbit of hydrogen

b) 2nd orbit of He⁺

c) 3rd orbit of Li²⁺

- d) First orbit of hydrogen
- 305. The velocity of an electron must possess to acquire a momentum equal to the photon of wavelength 5200
 - A°, will be

a) 1398 ms^{-1}

- b) 1298 ms⁻¹
- c) 1400 ms^{-1}
- d) 1300 ms^{-1}

- 306. In potassium the order of energy level for 19th electron is:
 - a) 3s > 3d
- b) 4s < 3d
- c) 4s > 4p
- d) 4s = 3d

- 307. [Ar] $3d^{10}$, $4s^1$ electronic configuration belongs to
 - a) T

b) Tl

c) Cu

- d) V
- 308. The charge on an electron is 4.8×10^{-10} esu. What is the value of charge in Li⁺ ion?
 - a) 4.8×10^{-10} esu
- b) 9.6×10^{-10} esu
- c) 1.44×10^{-9} esu
- d) 2.4×10^{-10} esu
- 309. What is the ration of mass of an electron to the mass of a proton?
 - a) 1:2

b) 1:1

- c) 1:1837
- d) 1:3
- 310. As the number of orbit increase from the nucleus, the difference between the adjacent energy levels:
 - a) Increases
- b) Remains constant
- c) Decreases
- d) None of these
- 311. The potential energy of an electron present in the ground state of Li²⁺ ion is
 - a) $+\frac{3e^2}{4\pi\varepsilon_0 r}$
- b) $-\frac{3e}{4\pi\varepsilon_0 r}$
- c) $-\frac{3e^2}{4\pi\varepsilon_0 r}$
- d) $-\frac{3e^2}{4\pi\varepsilon_0 r^2}$

- 312. The orbital angular momentum of a p-electron is given as:
 - a) $\frac{h}{\sqrt{2}\pi}$

- b) $\sqrt{3} \frac{h}{2\pi}$
- c) $\sqrt{\frac{3}{2}} \frac{h}{\pi}$

d) $\sqrt{6} \cdot \frac{h}{2\pi}$

- 313. Transition from n = 2,3,4,5 ... to n = 1 is called
 - a) Lyman series
- b) Paschen series
- c) Balmer series
- d) Bracket series
- 314. If the total energy of an electron in a hydrogen like atom in an excited state is -3.4 eV, then the de Broglie wavelength of the electron is:
 - a) 6.6×10^{-10}
- b) 3×10^{-10}
- c) 5×10^{-9}
- d) 9.3×10^{-12}

- 315. Which *d*-orbital does not have four lobes?
 - a) $d_{x^2-v^2}$
- b) d_{xy}

c) d_{z^2}

d) d_{xz}

- 316. The nucleus of an atom contains
 - a) Proton and electron

b) Neutron and electron

c) Proton and neutron

- d) Proton, neutron and electron
- 317. Total number of electrons present in acetylene molecule is:
 - a) 14

b) 26

c) 18

d) 16

- 318. An ion which has 18 electrons in the outermost shell is:
 - a) Cui

b) Th⁴⁺

c) Cs⁺

- d) K+
- 319. The maximum number of electrons in a *p*-orbital with n=6 and m=0 can be:
 - a) 2

b) 6

c) 10

d) 14

320. The graph representing node is

321. Energy of photon of visible light is

Gnl	luc	Edu	cat	tion
υμι	us	Euu	cui	uun

			Gpius Education
a) 1 eV	b) 1 MeV	c) 1 eV	d) 1 keV
	ing statements is incorrect?		
a) Extra stability of trends of IE acro	half filled and completely fille ss a period	ed orbitals among s and p l	block elements is reflected in
b) $\frac{\text{Extra stability of}}{\text{EA trends across}}$	half-filled and completely fille	ed orbitals among s and p \mid	block elements is reflected in
	is incorrect for cases where e	energy difference hetween	ns and $(n-1)d$ sub-shell us
larger			no una (iv 1) w sub shen us
•	half filled sub-shell is due to l		
-		-	ency than a certain minimum:
a) Frequency	b) Wavelength	c) Speed	d) Charge
	ence between the ground state		I state is 4.4×10^{-3} J, the
wavelength of phota a) 2.26×10^{-12} m	on required to produce the transport (1.13×10^{-12}) m	c) 4.52×10^{-16} m	d) 4.52×10^{-12} m
	lowing, the radius will be sam	•	
a) $He^+, n = 2$	b) Li ²⁺ , $n = 2$	c) Be ³⁺ , $n = 2$	d) Li^{2+} , $n = 3$
326. The volume of a pro		c) be $, n = 2$	$u_j \operatorname{Li}^{-}, n = 3$
a) $1.5 \times 10^{-30} \text{cm}^3$	b) $1.5 \times 10^{-38} \text{cm}^3$	c) $1.5 \times 10^{-34} \text{cm}^3$	d) None of these
_	taken in the transition is:	c) 1.5 × 10 cm	a) None of these
a) Zero	b) 1 sec	c) 10 ⁻⁵ sec	d) 10 ⁻⁸ sec
•	izimuthal quantum number is	,	•
a) $+1$, -1		(2,-c) +2,+1,0,-1,-2	d) $+1, 0, -1$
329. Positive rays or can		1 , (0) (1) (1) (1)	4, 12, 0, 1
a) Electromagnetic		_	
	vely charged gaseous ions		
c) A steam of electr			
d) Neutrons	FDI	CATTONI	
330. X-rays do not show	the phenomenon of :	JCAHON	
a) Diffraction			
b) Polarisation			
c) Deflection by ele	ctric field		
d) Interference			
331. For an electron, if the	he uncertainty in velocity is Δt		, , ,
a) $\frac{h}{2}\pi m\Delta v$	b) $\frac{2\pi}{hm\Delta v}$	c) $\frac{h}{4\pi m \Delta v}$	d) $\frac{2\pi m}{h\Delta v}$
4			1000
_	Hength of H-atom in Lyman se	eries is x , the longest wave.	length in Balmer series of He ⁺
is 36r	52	X	9x
a) $\frac{36x}{5}$	b) $\frac{5x}{9}$	c) $\frac{x}{4}$	d) $\frac{9x}{5}$
333. Rydberg is :	,	•	3
	erg constant and is a universa	l constant	
-	th and one Rydberg equal to 1		
	nber and one Rydberg equal to		
	nd one Rydberg equal to 13.6 o		
334. Which is not deflect	ced by magnetic field:		
a) Neutron	b) Positron	c) Proton	d) Electron
	pers $+\frac{1}{2}$ and $-\frac{1}{2}$ for an electron		
•	ron in clockwise and anticlock	-	-
b) Rotation of elect	ron in anticlockwise and clock	wise direction respectivel	у

			Gpius Education
. •	of electron pointing up and		
	hanical spin states which ha	-	
-	ency of the incident radiation	ns increases the:	
a) Rate of emission of	photo-electrons		
b) Work function			
c) Kinetic energy of p			
d) Threshold frequen	-		
	y of photon whose momentu		
a) $5 \times 10^{16} \text{Hz}$	b) $5 \times 10^{17} \text{Hz}$	c) $0.5 \times 10^{18} \text{Hz}$	d) $5 \times 10^{18} \text{Hz}$
338. A quanta will have mo	ore energy, if :		
a) The wavelength is	larger		
b) The frequency is hi	igher		
c) The amplitude is h	igher		
d) The velocity is low	er		
339. I ₂ molecule dissociate	es into atoms after absorbing	g light of 4500 A°. If one qu	antum of energy is absorbed
-	KE of iodine atoms will be		
(BE of $I_2 = 240 \text{ kJ/m}$			
a) 240× 10 ^{–19} J	b) 0.216× 10 ⁻¹⁹ J	c) 2.16×10^{-19} J	d) 2.40× 10 ⁻¹⁹ J
340. The rest mass of a pho	oton of wavelength λ is:		
a) Zero	b) hc/λ	c) $h/c\lambda$	d) h/λ
341. An atom emits energy	γ equal to $4 imes 10^{-12}$ erg. To χ	which part of electromagne	tic spectrum it belongs?
a) UV region	b) Visible region	c) IR region	d) Microwave region
342. The valence shell elec	tronic configuration of Cr ²⁺		
a) $4s^0 3d^4$	b) $4s^23d^2$		
343. The total number of e	lectrons present in all the 's	$^{\prime}$ orbitals, all the $^{\prime}p^{\prime}$ orbitals	and all the ' d ' orbitals of
cesium ion are respec	tively		
a) 8, 26, 10	b) 10, 24, 20		d) 12, 20, 22
344. In the above question	, the velocity acquired by th		
a) $\sqrt{V/m}$	b) $\sqrt{(eV/m)}$	c) $\sqrt{(2eV/m)}$	d) None of these
345. The ionization energy	of the ground state hydrog	en atom is 2.18 $ imes$ 10 $^{-18}$ J. T	he energy of an electron in its
second orbit would be	e		
a) -2.67×10^{-18} J	b) -5.45×10^{-19} J	c) -3.58×10^{-18} J	d) -4.68×10^{-19} J
346. The velocity of electro	on in first orbit of H-atoms a	s compared to the velocity	of light is
a) $\frac{1}{10}$ th	b) $\frac{1}{100}$ th	c) $\frac{1}{1000}$ th	d) Same
10	100	1000	
	of 355 nm and emits at two	wavelengths. If one of the	emission is at 680 nm, the
other is at	11.22		
a) 1035 nm	b) 325 nm	c) 743 nm	d) 518 bm
	s the rules of classical physic	s because it assumes that:	
a) All electrons have s	· ·		
b) The nucleus have s	-		
	lve around the nucleus		
	can accelerate without emit	ting radiant energy	
349. The stability of ferric			
a) Half filled <i>f</i> -orbital		b) Half filled <i>d</i> -orbitals	
c) Completely filled <i>f</i>		d) Completely filled d -	orbitals
-	es wave properties was show	= = = = = = = = = = = = = = = = = = = =	D a 1
a) Bohr	b) de Broglie	c) Davission and germ	er d) Schrödinger
351. The nature of canal ra	iys depends on:		

			Gplus Education
a) Nature of electrod	le		
b) Nature of discharg	ging tube		
c) Nature of residual	gas		
d) All of the above			
352. Total number of vale	ncy electrons in phosph	onium ion PH ₄ is:	
a) 16	b) 32	c) 8	d) 18
353. Neutron possesses:			
a) Positive charge		b) No net charge	
c) Negative charge		d) All are correct	
354. Cathode-ray tube is u			
a) Compound micros	scope		
b) A radio receiver			
c) A television set			
d) A van de Graff gen			
355. Non-directional orbi	tal is		
a) 4 <i>p</i>	b) 4 <i>d</i>	c) 4 <i>f</i>	d) 3 <i>s</i>
356. How many unpaired		Ni^{2+} cation? (At. No. = 28)	
a) 0	b) 2	c) 4	d) 6
357. The maximum sum of	of the number of neutron	is and proton is an isotope o	of hydrogen is :
a) 6	b) 5	c) 4	d) 3
_		m of an electron is given by	
a) $S = \sqrt{s(s+1)} \frac{h}{2\pi}$	$b) S = s \frac{h}{2\pi}$	c) $S = \frac{3}{2} \times \frac{h}{2\pi}$	d) None of these
359. A $3d$ -electron having	gs = +1/2 can have a m	agnetic quantum no:	
a) +2	b) +3	c) – 3	d) +4
360. The emission spectrum	ım of hydrogen is found	to satisfy the expression fo	r the energy change, ΔE (in
joules), such that ΔE correspond to Pasch		$\left. \cdot ight]$ J, where, $n_1=1,2,3,$ and	$1 n_2 = 2,3,4, \dots$ The spectral lines
a) $n_1 = 1$ and $n_2 = 2$		b) $n_1 = 1$ and $n_2 =$	= 3.4.5
c) $n_1 = 3$ and $n_2 = 4$		d) $n_1 = 2$ and $n_2 =$	
		g spin quantum number s =	
a) 10	b) 14	c) 5	d) None of these
362. The ratio of nucleons	,	-, -	,
a) 8/9	b) 4/5	c) 9/8	d) 1
			th nearly [Given, $m = 6.62 \times$
10^{-27} kg, $h = 6.62 \times 10^{-9}$ m		c) 10 ⁻¹⁹ m	d) 1 Å
,	,	c) 10 - m	aj i A
364. Which is not permiss a) $2d$	b) $4f$	a) 6m	4) 2 a
•	, ,	c) $6p$	d) 3s d end corresponds to which one of
			_
-	b) 5→2	on for Bohr orbit in an atom c) 4→1	d) 2→5
a) $3\rightarrow 2$	•	,	
		ed to $n = 5$, the number of	different frequencies of radiations
which may be emitte		-) O	1) 10
a) 4	b) 5	c) 8	d) 10
• •	•	wave nature of matter was	proposed by and respectively
a) Heisenberg, de Br	•		
b) de Brogli, Heisenb	=		
c) Heisenberg, Planc	K		

			Gpius Eaucation
d) Planck, Heisenberg			
368. Quantum theory was p	-		
a) Rutherford	b) Maxwell	c) Max Planck	d) Becquerel
			lower than that of the normal
		he electrons would be close	er to the nucleus. Yet $1s^7$ is not
observed because is vi			
a) Heisenberg's uncer	tainty principle		
b) Hund's rule			
c) Pauli's exclusion pr	=		
d) Bohr's postulate of	=		
370. The number of p -elect		\ -	12.45
a) 12	b) 15	c) 7	d) 17
371. Potassium ion is isoele		-) II-	12.14.
a) Ar	b) He	c) Fe	d) Mg
372. An electron that has q		m = 2:	
a) Must have spin value.	le +1/2		
b) Must have $l=1$ c) Must have $l=0.1$ o			
d) Must have $l = 0,1$ or disconnections disconnection di	1 2		
373. Cr has electronic confi	guration ac		
	_	c) $3s^23p^63d^6$	d) None of these
374. The number of vacant			u) None of these
a) 2	b) 4	c) 8	d) 6
375. Energy of H-atom in th			
a) -6.8 eV	b) -3.4 eV	c) -1.51eV	d) -4.53 eV
376. As electron moves awa		•	u) 1166 CV
a) Decreases		c) Remains constant	d) None of these
377. A hydrogen atom in its			-
a) 1.5 eV	b) 3.4 eV	c) 10.2 eV	d) 13.6 eV
378. Wave nature of electro	ons was demonstrated by	•	,
a) Schrodinger	b) De-Broglie	c) Davisson and Garm	er d) Heisenberg
379. The principal quantum	n number of H - atom orbita	l, if the electron energy is –	-3.4 eV, will be
a) 1	b) 2	c) 3	d) Zero
380. No two electrons can h	nave the same values of	quantum numbers.	
a) One	b) Two	c) Three	d) Four
381. If $n = 3$, $l = 0$ and $m = 0$	= 0, then atomic number is		
a) 12 or 13	b) 13 or 14	c) 10 or 11	d) 11 or 12
382. The threshold waveler	ngth for photoelectric effec		
a) 4×10^{-19} J	b) 1 J	c) 2×10^{-19} J	d) 3×10^{-10} J
383. The first atom with inc	complete d -shell is:		
a) Sc	b) Cu	c) Fe	d) Zn
384. The wave number of t	he spectral line in the emis	sion spectrum of hydrogen	will be equal to $\frac{8}{9}$ times the
Rydberg's constant if t	the electron jumps from		,
a) $n = 3$ to $n = 1$	b) $n = 10$ to $n = 1$	c) $n = 9$ to $n = 1$	d) $n = 2$ to $n = 1$
385. Particle nature of elec	tron was experimentally de	emonstrated by	•
a) Max Bon	b) J.J. Thomson	c) De-Broglie	d) Schrondinger
386. The difference in ang	ular momentum associate	_	successive orbits of hydrogen
atom is:			
a) h/π	b) $h/2\pi$	c) h/2	d) $(n-1)h/2\pi$

				Gplus Education
387.	The volume of nucleus is a	about:		
	a) 10^{-4} times that of an a	tom		
	b) 10^{-12} times that of an a	atom		
	c) 10^{-6} times that of an a	tom		
	d) 10^{-10} times that of an a			
388.	•	electrons than neutrons is:		
	a) F	b) Na ⁺	c) 0 ²⁻	d) Mg ²⁺
389.	•	ociated with Planck's theor	•	, 0
	a) Radiations are associat			
		- -	um is proportional to frequ	ency
	_	ther emitted nor absorbed		J
		ther emitted nor absorbed		
390.				O ¹⁸ . Which of the following
	mol. wt. of H ₂ O will not be		1	3
	a) 19	b) 20	c) 24	d) 22
391.	Which ion has the maxim		,	,
	a) Mn ³⁺	b) Cu ²⁺	c) Fe ³⁺	d) V ³⁺
392.	Photoelectric effect was d	•	-,	, .
	a) Hallwach	b) Lenard	c) Einstein	d) Hertz
393.	The electronic configurati		-,	,
	a) $[Ar]3d^44s^2$	b) $[Ar]3d^34s^0$	c) $[Ar]3d^24s^1$	d) $[Ar]3d^54s^1$
394.		the metal surface, the emitt	,	a) [m]ow is
0,1	a) Are called photons	ine inetar surrace, the entite	iod crock onor	
	b) Have random energies	731		
		end upon intensity of light		
		end upon the frequency of		
395.			for electron (e) , proton (p)), neutron (n) and α -
	particles is	JPLUS EDUC	(1), [1]	,, (,
	a) e, p, n, α	b) <i>n</i> , α, <i>p</i> , <i>e</i>	c) n, p, e, α	d) <i>n</i> , <i>p</i> , <i>α</i> , <i>e</i>
396.	= =	-	onisation of N atom. What i	
	N?			
	a) 1.4 kJ	b) $1.4 \times 10^4 \text{ kJ}$	c) $1.4 \times 10^2 \text{ kJ}$	d) $1.4 \times 10^3 \text{ kJ}$
397.		on of any particle, which o	•	,
		b) 1.6×10^{-10} coulomb		d) Zero
398.			4000 Å, which provide 1 J ε	
	a) 2×10^{18}	b) 2×10^9	c) 2×10^{20}	d) 2×10^{10}
399.		•	bit with an energy differen	•
0,,,	the wavelength of the line		sie wien an energy ameren	oc or stockt white will be
	a) 3660 Å	b) 3620 Å	c) 4140 Å	d) 4560 Å
400	•	•		get deflected, whereas most
100.	go straight, undeflected. T		articles, only a lew of them?	get deflected, whereas most
	~ ~	exerted on α - particle by e	lectrons is insufficient	
	b) The volume of nucleus		iceti ons is insumerent	
	_	acting on fast moving α -pa	rticle is very small	
	d) The neutrons have no		refere is very sinan	
401	-	ements has least number of	felectrons in its M-shell?	
101	a) K	b) Mn	c) Ni	d) Sc
402	_			igh a potential difference V.
	The kinetic energy of the	-		on a potential amerenee vi

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 26

_		_ ,			•
Gpl	us	Ła	uc	atı	on

a) V	b) eV	c) MeV	d) None of these
	anics suggests that electrons		a) Hone of mode
	icleus in circular orbits		
	icleus in elliptical orbits		
c) Form diffused cloud			
d) None of the above			
404. Which of the following	is non-permissible?		
_	b) $n = 4, l = 2, m = 1$	c) $n = 4, l = 4, m = 1$	d) $n = 4, l = 0, m = 0$
405. Which electronic confi	guration does not follow the	Pauli's exclusion principle?	
	b) $1 s^2$, $2s^2 2p^4$, $3s^2$		d) $1s^2$, $2s^22p^6$, $3s^3$
	atom the transition energy		, the energy for the same
transition in Be ³⁺ is:			
a) 20 . 4 eV	b) 30.6 eV	c) 163.2 eV	d) 40.8 eV
407. How many electrons ca	an be accommodated in a sub	shell for which $n = 3, l = 1$?
a) 8	b) 6	c) 18	d) 32
408. Which of the following	is correctly matched?		
a) Momentum of H ato	m when electrons return from	$m n = 2 \text{ to } n = 1: \frac{3Rh}{4}$	
	on : Independent of wavele	•	
•	rays : Independent of gas in t	0	
	: $(\text{Mass no.})^{1/2}$	O	
•	$_{i}$ to remove nucleon and an	energy E_{ρ} to remove an e	lectron from the orbit of an
atom, then:		S. C	
a) $E_n = E_e$	b) $E_n < E_e$	c) $E_n > E_e$	d) $E_n \ge E_e$
410. Light, a well known for	rm of energy, is treated as a fo	orm of matter, by saying tha	at it consist of :
a) Photons or bundles	of energy		
b) Electrons or a wave			
	APR 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P A TT / N N I	
c) Neutrons, since elec	trically neutral		
c) Neutrons, since electd) None of the above	trically neutral	LAHON	
411. Number of orbits and of	orbitals having electrons in $_{ m 1}$	₄ Si are respectively :	
411. Number of orbits and a 3,6	orbitals having electrons in 1 b) 6,3	₄ Si are respectively : c) 7,3	d) 3,8
411. Number of orbits and a 3,6	orbitals having electrons in $_{ m 1}$	₄ Si are respectively : c) 7,3	
411. Number of orbits and of a) 3,6 412. In a hydrogen atom, if is:	orbitals having electrons in 1 b) 6,3 energy of an electron in grou	₄ Si are respectively : c) 7,3 and state is -13.6 eV, then	that in the 2nd excited state
411. Number of orbits and of a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV	orbitals having electrons in 1 b) 6, 3 energy of an electron in grou b) -3.4 eV	₄ Si are respectively: c) 7,3 und state is −13.6 eV, then c) −6.0 eV	that in the 2nd excited state d) -13.6 eV
411. Number of orbits and of a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electro	orbitals having electrons in 1 b) 6, 3 energy of an electron in grou b) -3.4 eV ns with the azimuthal quantu	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for	that in the 2nd excited state d) -13.6 eV $_{24}$ Cr in ground state are:
411. Number of orbits and of a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electrona) 16 and 5	orbitals having electrons in 1 b) 6, 3 energy of an electron in grou b) -3.4 eV ns with the azimuthal quantu b) 12 and 5	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for c) 16 and 4	that in the 2nd excited state d) -13.6 eV
411. Number of orbits and of a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electroma) 16 and 5 414. The number of valence	b) 6, 3 energy of an electron in grou b) -3.4 eV ns with the azimuthal quantu b) 12 and 5 e electrons in completely exci	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for c) 16 and 4 ted sulphur atom is:	that in the 2nd excited state d) -13.6 eV 24Cr in ground state are: d) 12 and 4
411. Number of orbits and of a) 3,6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electrona) 16 and 5 414. The number of valence a) Zero	b) 6, 3 energy of an electron in grou b) -3.4 eV ns with the azimuthal quantu b) 12 and 5 e electrons in completely exci b) 4	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for c) 16 and 4	that in the 2nd excited state d) -13.6 eV $_{24}$ Cr in ground state are:
411. Number of orbits and of a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electroma) 16 and 5 414. The number of valence a) Zero 415. An improbable configuration	b) 6, 3 energy of an electron in grou b) -3.4 eV ns with the azimuthal quantu b) 12 and 5 e electrons in completely exci b) 4 tration is:	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6	that in the 2nd excited state d) -13.6 eV 24Cr in ground state are: d) 12 and 4 d) 2
411. Number of orbits and of a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electroma) 16 and 5 414. The number of valence a) Zero 415. An improbable configura [Ar]3d ⁴ , 4s ²	b) 6, 3 energy of an electron in groups b) -3.4 eV ns with the azimuthal quantum b) 12 and 5 e electrons in completely excius b) 4 tration is: b) $[Ar]3d^5, 4s^1$	4Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l = 1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6 c) [Ar] $3d^6$, $4s^2$	that in the 2nd excited state d) -13.6 eV 24Cr in ground state are: d) 12 and 4
411. Number of orbits and of a) 3,6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electrona) 16 and 5 414. The number of valence a) Zero 415. An improbable configura (Ar) 3d ⁴ , 4s ² 416. The wave number of ra	b) 6, 3 energy of an electron in groups b) $-3.4 \mathrm{eV}$ ns with the azimuthal quantum b) 12 and 5 e electrons in completely excius b) 4 aration is: b) [Ar] $3d^5$, $4s^4$ adiation of wavelength 500 n	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6 c) [Ar] $3d^6$, $4s^2$ m is:	that in the 2nd excited state d) -13.6 eV 24Cr in ground state are: d) 12 and 4 d) 2 d) [Ar]3d ¹⁰ , 4s ¹
411. Number of orbits and of a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electroma) 16 and 5 414. The number of valence a) Zero 415. An improbable configura (Ar) [Ar] 3d ⁴ , 4s ² 416. The wave number of rail (Ar) 5 × 10 ⁻⁷ m ⁻¹	b) 6, 3 energy of an electron in group b) -3.4 eV ns with the azimuthal quantum b) 12 and 5 e electrons in completely excius b) 4 aration is: b) $[\text{Ar}]3d^5, 4s^1$ adiation of wavelength 500 n b) $2 \times 10^{-7} \text{m}^{-1}$	4Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l = 1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6 c) [Ar] $3d^6$, $4s^2$ m is: c) 2×10^6 m ⁻¹	that in the 2nd excited state d) -13.6 eV $_{24}\text{Cr}$ in ground state are: d) $12 \text{ and } 4$ d) 2 d) $[\text{Ar}]3\text{d}^{10}, 4s^{1}$ d) $500 \times 10^{-9}\text{m}^{-1}$
411. Number of orbits and a a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electro a) 16 and 5 414. The number of valence a) Zero 415. An improbable configura (Ar) a	b) 6, 3 energy of an electron in groups b) -3.4 eV ns with the azimuthal quantum b) 12 and 5 electrons in completely exciple b) 4 tration is: b) $[\text{Ar}]3d^5, 4s^1$ adiation of wavelength 500 n b) $2 \times 10^{-7} \text{m}^{-1}$ E ₂ of two radiations are 25 of	4Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l = 1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6 c) [Ar] $3d^6$, $4s^2$ m is: c) 2×10^6 m ⁻¹	that in the 2nd excited state d) -13.6 eV $_{24}\text{Cr}$ in ground state are: d) $12 \text{ and } 4$ d) 2 d) $[\text{Ar}]3\text{d}^{10}, 4s^{1}$ d) $500 \times 10^{-9}\text{m}^{-1}$
411. Number of orbits and a a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electromaly 16 and 5 414. The number of valence along	b) 6, 3 energy of an electron in group b) $-3.4 \mathrm{eV}$ ns with the azimuthal quantum b) 12 and 5 electrons in completely exciple b) 4 tration is: b) $[\mathrm{Ar}]3d^5, 4s^1$ adiation of wavelength 500 n b) $2 \times 10^{-7} \mathrm{m}^{-1}$ E ₂ of two radiations are 25 of λ_2 will be:	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6 c) $[Ar]3d^6, 4s^2$ m is: c) $2 \times 10^6 \text{m}^{-1}$ eV and 50 eV respectively.	that in the 2nd excited state d) -13.6 eV $_{24}\text{Cr}$ in ground state are: d) $12 \text{ and } 4$ d) 2 d) $[\text{Ar}]3\text{d}^{10}, 4\text{s}^{1}$ d) $500 \times 10^{-9}\text{m}^{-1}$ The relation between their
411. Number of orbits and a a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electro a) 16 and 5 414. The number of valence a) Zero 415. An improbable configura (Ar) a	b) 6, 3 energy of an electron in group b) $-3.4 \mathrm{eV}$ ns with the azimuthal quantum b) 12 and 5 electrons in completely excision b) 4 tration is: b) $[\mathrm{Ar}]3d^5, 4s^1$ adiation of wavelength 500 n b) $2 \times 10^{-7} \mathrm{m}^{-1}$ E ₂ of two radiations are 25 of λ_2 will be:	4Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l = 1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6 c) [Ar] $3d^6$, $4s^2$ m is: c) 2×10^6 m ⁻¹	that in the 2nd excited state d) -13.6 eV $_{24}\text{Cr}$ in ground state are: d) $12 \text{ and } 4$ d) 2 d) $[\text{Ar}]3\text{d}^{10}, 4s^{1}$ d) $500 \times 10^{-9}\text{m}^{-1}$
411. Number of orbits and α a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electronal 16 and 5 414. The number of valence a) Zero 415. An improbable configural [Ar] $3d^4$, $4s^2$ 416. The wave number of rational $3d^4$, $4s^2$ 417. The energies E_1 and E_2 wavelengths E_1 and E_2 and E_3 and E_4 and E_4 and E_4 and E_5 and E_6 are E_6 and E_6 and E_6 and E_6 are E_6 and E_6 and E_6 are E_6 are E_6 and E_6 are E_6 and E_6 are E_6 and E_6 are E_6 are E_6 and E_6 are E_6 are E_6 and E_6 are E_6 and E_6 are E_6 are E_6 are E_6 and E_6 are E_6 and E_6 are E_6 are E_6 are E_6 and E_6 are E_6 are E_6 and E_6 are E_6	b) 6, 3 energy of an electron in group b) $-3.4 \mathrm{eV}$ ns with the azimuthal quantum b) 12 and 5 electrons in completely exciple b) 4 tration is: b) $[\mathrm{Ar}]3d^5, 4s^1$ adiation of wavelength 500 n b) $2 \times 10^{-7} \mathrm{m}^{-1}$ Eq. of two radiations are 25 of λ_2 will be: b) $\lambda_1 = \lambda_2$	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6 c) $[Ar]3d^6, 4s^2$ m is: c) $2 \times 10^6 \text{m}^{-1}$ eV and 50 eV respectively. c) $\lambda_1 = 2\lambda_2$	that in the 2nd excited state d) -13.6 eV $_{24}\text{Cr}$ in ground state are: d) $12 \text{ and } 4$ d) 2 d) $[\text{Ar}]3\text{d}^{10}, 4\text{s}^{1}$ d) $500 \times 10^{-9}\text{m}^{-1}$ The relation between their
411. Number of orbits and α a) 3, 6 412. In a hydrogen atom, if is: a) -1.51 eV 413. The number of electronal 16 and 5 414. The number of valence a) Zero 415. An improbable configural [Ar] $3d^4$, $4s^2$ 416. The wave number of rational $3d^4$, $4s^2$ 417. The energies E_1 and E_2 wavelengths E_1 and E_2 and E_3 and E_4 and E_4 and E_4 and E_5 and E_6 are E_6 and E_6 and E_6 and E_6 are E_6 and E_6 and E_6 are E_6 are E_6 and E_6 are E_6 and E_6 are E_6 and E_6 are E_6 are E_6 and E_6 are E_6 are E_6 and E_6 are E_6 and E_6 are E_6 are E_6 are E_6 and E_6 are E_6 and E_6 are E_6 are E_6 are E_6 and E_6 are E_6 are E_6 and E_6 are E_6	b) 6, 3 energy of an electron in groups b) -3.4 eV ns with the azimuthal quantum b) 12 and 5 e electrons in completely excise b) 4 fration is: b) $[Ar]3d^5, 4s^1$ adiation of wavelength 500 n b) $2 \times 10^{-7} \text{m}^{-1}$ Eq. of two radiations are 25 of d λ_2 will be: b) $\lambda_1 = \lambda_2$ 7 electrons, the nitride ion (2)	$_4$ Si are respectively: c) 7,3 and state is -13.6 eV, then c) -6.0 eV am number $l=1$ and 2 for c) 16 and 4 ted sulphur atom is: c) 6 c) $[Ar]3d^6, 4s^2$ m is: c) $2 \times 10^6 \text{m}^{-1}$ eV and 50 eV respectively. c) $\lambda_1 = 2\lambda_2$	that in the 2nd excited state d) -13.6 eV $_{24}\text{Cr}$ in ground state are: d) $12 \text{ and } 4$ d) 2 d) $[\text{Ar}]3\text{d}^{10}, 4\text{s}^{1}$ d) $500 \times 10^{-9}\text{m}^{-1}$ The relation between their

c) 4 protons and 10 electrons

			Opius Luucution
d) 10 protons and 7 elects 419. Which among the following		nal etato?	
-	ig is correct for 5B in norm	iai state?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
: Against Hund's rule b) 1			
: Against Aufbau princi	ple as well as Hund's rule		
c) Liju Liju Liju Liju Liju Liju Liju Liju	clusion principle and not H	und's rule	
d) 1 1 1			
420. Cathode rays are produce	d when the pressure in the	discharge tube is of the or	der of :
a) 76 cm of Hg			
b) 10^{-6} cm of Hg			
c) 1 cm of Hg			
d) 10^{-2} to 10^{-3} mm of H ₈	= -	0	
421. The energy ration of a ph			
a) 1:1	b) 2:1	c) 1:2	d) 1:4
422. The study of photoelectri		anding:	
a) Conservation of energy			
b) Quantization of charge			
c) Conservation of charge			
d) Conservation of kinetic			
423. What is the correct orbita	l designation for the electro	on with the quantum numb	ers, n = 4, l = 3, m =
-2, s = 1/2?	12.14		20.4
a) 3 <i>s</i>	b) 4 <i>f</i>	c) 5 <i>p</i>	d) 6 <i>s</i>
424. E_1 for He ⁺ is -54.4 eV. The		A TELO NI	
a) -6.8eV	b) -13.6eV	c) -27.2eV	d) -108.8eV
425. The total number of funda			
a) 6	b) 8	c) 14	d) 20
426. In ground state of chronelectrons is:	, ,		
a) 15	b) 16	c) 20	d) 14
427. Heisenberg's uncertainty		=	
a) Proton	b) Neutron	c) Electron	d) Cricket ball
428. Which set is not correct?			
	b) 3, 2, 1, +1/2		d) 3, 2, 0, +1/2
429. If E_e , E_a and E_p represent		electron, alpha particle and	a proton respectively, each
moving with same de-Bro			
	b) $E_e > E_\alpha > E_p$		
430. Which among the following penultimate shell?	ng species have the same nu	umber of electrons in its ou	termost as well as
a) Mg ²⁺	b) 0 ²⁻	c) F ⁻	d) Ca ²⁺
431. Photons of energy 6 eV	,	,	•
stopping potential?	are meidented on a pota	ssium surface of work tu	nedon 2.1 cv. what is the
a) -6 V	b) -2.1 V	c) -3.9 V	d) -8.1 V
432. If uncertainty in position	-	,	-
	_	-	_
a) $\sqrt{\frac{h}{2\pi}}$	b) $\frac{1}{m}\sqrt{\frac{h}{\pi}}$	c) $\frac{h}{\pi}$	d) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$
$\sqrt{2\pi}$	$m \sqrt{\pi}$	$\sqrt{\pi}$	$\int 2m \sqrt{\pi}$

			Gpius Education
433. Which one of the follow	_		
a) Ti ⁺	b) Na ⁺	c) F ⁻	d) N ³⁻
434. How many electrons wi		-	
a) 2	b) 3	c) 4	d) 5
435. The statements are valid			
.,		*	e to assign electrons to empty
-	r them into a particular orb		
	are placed in two differen	it orbitals, energy is lower	if the spins are parallel
a) Aufbau principle			
b) Hund's rule	. 1		
c) Pauli's exclusion prin	=		
d) Uncertainty principle			
436. The radius of electron in		iyarogen atom is	
(Where, a_0 is the Bohr's		a) 2 a	4) 0 ~
a) a_0	b) $4a_0$	c) $2a_0$	d) 8a ₀
437. The momentum of a photon $\frac{1}{2}$ $\frac{1}$		s is nearly:	
a) 1.1×10^{-24} kg m s ⁻¹			
b) 3.33×10^{-43} kg m s ⁻¹			
c) 2.27×10^{-40} kg m s ⁻¹			
d) 2.27×10^{-38} kg m s ⁻		a a was at	
438. In hydrogen atom, whice a) $1s < 2p$	b) $2 p = 2s$	correct: $c) 2 p > 2s$	d) $2 p < 3s$
•			rum of hydrogen satisfies the
following conditions:	tani inie oi tile Lyman s	eries of the atomic specti	fulli of flydrogen sausties the
•	equencies of another Lym	an line and a Ralmer line	
• •	requencies of a certain line		han lina
7 7	frequencies of a Lyman and	-	
To what transition does			ichet IIIe.
a) $n_2 = 3$ to $n_1 = 1$	b) $n_2 = 3$ to $n_1 = 2$	c) $n_2 = 2$ to $n_1 = 1$	d) $n_2 = 4$ to $n_4 = 1$
440. An isobar of $_{20}$ Ca 40 is	,	.,	,
a) ₁₈ Ar ⁴⁰	b) ₂₀ Ca ³⁸	c) ₂₀ Ca ⁴²	d) ₁₈ Ar ³⁸
	·		eed of the electron in the third
Bohr's orbit is:			
a) <i>x</i> /9	b) x/3	c) 3 <i>x</i>	d) 9 <i>x</i>
442. The electronic velocity	in the fourth Bohr's orbit	of hydrogen is v . The velo	city of the electron in the first
orbit would ne:			•
a) 4 <i>v</i>	b) 16 <i>v</i>	c) v/4	d) v/16
443. Which type of radiation	is not emitted by the elect	ronic structure of atoms?	
a) Ultraviolet light	b) X-rays	c) Visible light	d) γ-rays
444. If E_1 , E_2 and E_3 represe	ent respectively the kinetic	c energies of an electron, a	an alpha particle and a proton
each having same de Br	oglie wavelength then:		
a) $E_1 > E_3 > E_2$	b) $E_2 > E_3 > E_1$	c) $E_1 > E_2 > E_3$	d) $E_1 = E_2 = E_3$
445. The frequency of first l	ine of Balmer series in hy	drogen atom is $v_{0lacktrel{1}}$ The from	equency of corresponding line
emitted by singly ionise	d helium atom is :		
a) $2v_0$	b) $4v_0$	c) $v_0/2$	d) $v_0/4$
446. In a set of degenerate of		bute themselves to retain l	ike spins as far as possible.
This statement belongs			
a) Pauli's exclusion prir		b) Aufbau principle	
c) Hund's rule of maxim	num multiplicity	d) Slater's rule	

			Gpius Eaucation			
447.	Electrons occupy the available sub-level which has lo	wer $n+l$ value. This is cal	led:			
	a) Hund's rule					
	b) Aufbau principle					
	c) Heisenberg's uncertainty principle					
	d) Pauli's principle					
1.1.Ω	Choose the correct statement among the following					
TT0.	a) Ψ^2 represents the atomic orbital					
	b) The number of peaks in radial distribution is $n-l$	C	,			
	c) A node is a point in space around nucleus where the	ie wave function Ψ has zer	o value			
	d) All of the above					
449.	Which possesses an inert gas configuration?		_			
		c) Mg ⁺	d) Cr ³⁺			
450.	Angular momentum of an electron in the n th orbit of	hydrogen atom is given by	У			
	a) $\frac{nh}{2\pi}$ b) nh	c) $\frac{2\pi}{nh}$	d) $\frac{\pi}{2nh}$			
	$\frac{a_{j}}{2\pi}$	$\frac{C}{nh}$	2nh			
451.	The discovered of neutron became very late because:					
	a) Neutrons are present in nucleus					
	b) Neutrons are fundamental particles					
	c) Neutrons are chargeless					
	d) All of the above					
452.	The frequency of a spectral line for electron transition	n in an atom is directly pro	portional to			
	a) Number of electrons undergoing transition	J 1	1			
	b) Velocity of electron	in .				
	c) The difference of energy between energy levels inv	volved in the transition				
	d) None of the above	voived in the transition				
152		for frequency y and y	of the incident radiation			
433.	53. Photoelectric emission is observed from a surface for frequency v_1 and v_2 of the incident radiation $(v_1 > v_2)$. If the maximum kinetic energies of the photoelectrons in the two cases are in the ratio $1:k$,					
		notoelectrons in the two	cases are in the ratio $1: R$,			
	then the threshold frequency v_0 is given by:	AIION	V V			
	a) $\frac{v_2 - v_1}{k - 1}$ b) $\frac{kv_1 - v_2}{k - 1}$	c) $\frac{kv_2 - v_1}{k - 1}$	$d)\frac{\mathbf{v}_2 - \mathbf{v}_1}{k}$			
	κ 1	n I	K			
454.	The number of $2p$ -electrons having spin quantum number of $2p$ -electrons have $2p$ -electrons h		2, 2			
455	,	c) 2	d) 3			
455.	Which statement relating to the spectrum of H atom i	s false?				
	a) The lines can be defined by quantum number					
	The lines of longest wavelength in the Balmer series	es corresponds to the trans	sition between $n=3$ and			
	n = 2 levels					
	c) The spectral lines are closer together at longer way	velengths				
	d) A continuum occurs at $n = \infty$					
456.	The atomic number of the element having maximum	number of unpaired 3 p -ele	ectrons is:			
	a) 15 b) 10	c) 12	d) 8			
457.	The maximum wavelength of light that can excite an e	electron from first to third	orbit of hydrogen atom is:			
	a) 487 nm b) 170 nm	c) 103 nm	d) 17 nm			
458.	The incorrect statement about Bohr's orbit of hydrog	en atom is				
	h^2	b) KE of electron = PE of e	electron			
	a) $r = n^2 \frac{1}{(e^2)^2}$,				
	a) $r = n^2 \frac{h^2}{4\pi^2 m \left(\frac{e^2}{4\pi\varepsilon_0}\right)}$					
	$2\pi^2m\left(\frac{e^2}{e^2}\right)^2$	d) None of the above is in	correct			
	c) $E = -\frac{1}{n^2} \frac{2\pi^2 m \left(\frac{e^2}{4\pi\epsilon_0}\right)^2}{h^2}$					
	κ					
45Q	Four different sets of quantum numbers for 4 electron	ns are given below				

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 30

			Gplus Education
1 - 4 0 0 1 - 2 -	2 1 1		-
$e_1 - 4, 0, 0, -\frac{1}{2}, e_2 -$	$3, 1, 1, -\frac{1}{2}$		
$e_1 = 4, 0, 0, -\frac{1}{2} : e_2 =$ $e_3 = 3, 2, 2, +\frac{1}{2} : e_4 =$	$\frac{1}{3}$, 0, 0, $+\frac{1}{3}$		
_	-		
The order of energy of			1) - > - > - > -
		e_1 c) $e_3 > e_1 > e_2 > e_4$	
	-shell of excited hydroge	en atom return to ground stad	e, the number of possible lines
spectrum is:	b) 4	a) 2	4) 5
a) 6	b) 4	c) 2	d) 3
461. The electrons occupy a) Paired	b) Unpaired	c) Both (a) and (b)	d) None of these
-		nte is -13.6 eV. The energy of	-
quantum number $n=$	=	ite is – 13.0 ev. The energy of	the level corresponding to the
a) -5.4 eV	=	c) -2.72 eV	d) -0.85 eV
463. According to Bohr's t		entum for an electron of 5th or	
a) $\frac{2.5h}{\pi}$	b) $\frac{5h}{\pi}$	c) $\frac{25h}{\pi}$	d) $\frac{6h}{2\pi}$
κ	76		=.0
		entum of the electron in $h/2\pi$	
a) First orbit	b) Second orbit	c) Third orbit	d) Fourth orbit
=		nce electron of rubidium $(Z = $	
a) 5,0,0, $+\frac{1}{2}$	b) 5,1,0, $+\frac{1}{2}$	c) 5,1,1, $+\frac{1}{2}$	d) 6,0,0, $+\frac{1}{2}$
466. Electron density in th	4		2
a) Zero	b) 0.50	c) 0.75	d) 0.90
		ciple quantum number n is	,
a) n	b) n^2	c) 2n	d) $2n^2$
468. Which does not chara	•	A	•
a) The radiation can b) It causes Zns to flu	ionise gas	UCATION	
c) Deflected by electr	ric and magnetic fields		
	shorter than ultraviolet ra	avs	
469. The velocity of an ele			
a) 2.79×10^7 cm/s	b) 9.27 \times 10 ²⁷ cm/		d) 92.7×10^7 cm/s
	-	, $2s^22p^3$. The number of unpai	,
a) 1	b) Zero	c) 3	d) 5
471. The orbital angular m	,	*	
_	b) Zero		$h \subseteq h$
a) $+\frac{1}{2} \cdot \frac{h}{2\pi}$	2) 2010	c) $\frac{h}{2\pi}$	d) $\sqrt{2}\frac{h}{2\pi}$
472. In the atomic spectru	m of hydrogen the series	of lines observed in the visibl	e region is:
a) Balmer series	b) Paschen series	c) Bracket series	d) Lyman series
473. According to Bohr's r	<u>-</u>		
a) The linear velocity	of the electron is quantis	sed	
b) The angular veloci	ty of the electron is quan	tised	
c) The linear momen	tum of the electron is qua	antised	

474. Which transition of electron in the hydrogen atom emits maximum energy? a) $2 \rightarrow 1$ b) $1 \rightarrow 4$ c) $4 \rightarrow 3$

d) $3 \rightarrow 2$

475. The quantum number that does not describe the distance and the angular disposition of the electron:

b) *l*

d) The angular momentum of the electron is quantised

c) m

d) s

			Gplus Education			
a) Isotopes	b) Isomers	c) Isobars	d) Isoelectronic			
477. In H atom, the electron is de-excited from 5th shell to 1st shell. How many different lines may appear in line spectrum?						
a) 4	b) 8	c) 10	d) 12			
478. The electronic configurat	•		u) 12			
a) $3d_{xy}^{1}3d_{yz}^{1}3d_{zx}^{1}4s^{1}$	ion with maximum exthang	b) $3d_{xy}^{1}3d_{yz}^{1}3d_{zx}^{1}3d_{x^{2}-y^{2}}^{1}$	$3d_{-}^{1}\Lambda_{c}^{1}$			
,, y	1 1	•				
c) $3d_{xy}^2 3d_{yz}^2 3d_{zx}^2 3d_{x^2-y^2}^2$		d) $3d_{xy}^2 3d_{yz}^2 3d_{zx}^2 3d_{x^2-y^2}^2$	$3d_{z^2}^2 4s^1$			
479. The orbital diagram in w	hich aufbau principle is viol	ated is:				
a) 1L 1 1						
b) 1 1 1	1					
c) 1 1 1	1					
d) 11 11 11	1					
480. In the ground state of Cu	_	oied, sub-shells occupied, fi	llied orbitals and unpaired			
electrons respectively are						
a) 4,8,15,0	b) 3,6,15,1	c) 3,6,14,0	d) 4,7,14,2			
481. If h is Planck's constant, t	the momentum of a photon of	of wavelength 0.01 Å is:				
a) $10^{-2}h$	b) <i>h</i>	c) $10^2 h$	d) $10^{12}h$			
482. What does the electronic		$3s^1$ indicate?				
a) Ground state of fluorir	ne e	b) Excited state of fluorin	e			
c) Excited state of neon	- A -	d) Excited state of the 0_2^-	ion			
483. Each <i>p</i> -orbital and each <i>a</i>	\emph{l} -orbital except one has lobe	es respectively as:				
a) 2,4	b) 1,4	c) 2,3	d) 1,1			
484. Which of the following st	484. Which of the following statements regarding an orbital is correct?					
-	trajectory around the nucle	eus in which electron can m	nove			
b) An orbital always has		ATION .				
c) An orbital is the region $\frac{c}{c}$	n around the nucleus where	there is a $90 - 95\%$ proba	bility of finding all the			
d) An orbital is character	rized by 3 quantum numbers	s n, l and m				
485. An electronic transition i	n hydrogen atom results in	the formation of H_{α} line of	hydrogen in Lyman series,			
			ransition (in kcal mol^{-1}) are			
a) -313.6, -34.84	b) -313.6, -78.4	c) -78.4, -34.84	d) -78.4, -19.6			
486. The wavelengths of the r	adiations emitted when in a	H atom, electron falls from	n infinity to stationary state			
1, is:						
a) 9.1×10^{-8} nm	b) 192 nm	c) 406 nm	d) 91 nm			
487. The values of quantum no	umbers for the outermost el	lectron in scandium (Sc = 1)	21) are:			
a) $n = 3, l = 2$	b) $n = 3, l = 3$	c) $n = 4, l = 0$	d) $n = 2, l = 3$			
488. Ultraviolet light of 6.2 eV	falls on aluminium surface	(work function = $4.2eV$).	The kinetic energy (in joule)			
of the fastest electron em	itted is approximately:					
a) 3×10^{-21}	b) 3×10^{-19}	c) 3×10^{-17}	d) 3×10^{-15}			
489. The number of spherical	nodes in 3p orbitals is					
a) 0	b) 1	c) 2	d) 3			
490. The maximum number of	f electron in \emph{p} -orbital with \emph{r}	n = 5, m = 1 is				
a) 6	b) 2	c) 14	d) 10			
491. The species that has same	e number of electrons as $_{16}$	S ³² is:				
a) ₁₆ S ⁺	b) ₁₇ Cl ⁻	c) ₁₆ S ⁻	d) ₁₇ Cl ⁺			
492. Select the odd man:						

			Gplus Education				
a) Deuteron	b) Proton	c) Electron	d) Cyclotron				
493. Assuming the velocity	493. Assuming the velocity be same, which sub-atomic particle possesses smallest de Broglie wavelength;						
a) An electron	b) A proton	c) An α -particle	d) All have same λ				
494. The chromium has di	fferent electronic configuration	on then what is expected	according to aufbau principle				
because:							
a) Cr is a metal							
b) It belongs to d-bloo	ck elments						
c) Half-filled <i>d</i> -orbita	ls give extra stability						
d) None of the above							
495. If the ionisation pote	ential for hydrogen atom is	13.6eV, then the waveler	ngth of light required for the				
ionisation of hydroge	n atom would be:						
a) 1911 nm	b) 912 nm	c) 68 nm	d) 91.2 nm				
496. Bohr's atomic theory	gave the idea of:						
a) Quantum numbers	b) Shape of sub-levels	c) Nucleus	d) Stationary states				
497. Which species has mo	ore electrons than protons?						
a) Cl ⁻	b) Ca ²⁺	c) K ⁺	d) Sc ³⁺				
498. Electronic configurati	on of niobium (Nb = 41) is:						
a) [Kr]4d ⁴ ,5s ¹	b) [Kr]4 d^6	c) $[Kr]4d^3, 5s^2$	d) [Kr] $5s^25 p^3$				
499. The momentum of rad	diation of wavelength 0.33 nm	ı iskg m sec $^{-1}$.					
a) 2×10^{-24}	b) 2×10^{-12}	c) 2×10^{-6}	d) 2×10^{-48}				
500. Predict the total spin	in Ni ²⁺ ion:						
a) $\pm 5/2$	b) ±3/2	c) $\pm 1/2$	d) ±1				
501. An increasing order (lowest first) for the values of	e/m for electron (e) , pro	ton (p) , neutron (n) and alpha				
(α) particle is:							
a) e, p, n, α	b) n, α, p, e	c) n, p, e, α	d) n, p, α, e				
502. Choose the arrangem	ent which shows the increasir	ng value of e/m for e, p, n	and $lpha$ -particles				
a) $n < \alpha < p < e$	b) e		d) $p < n < \alpha < e$				
503. The m' value for an e	lectron in an atom is equal to	the number of m value for	r $l=1$. The electron may be				
present in							
a) $3d_{x^2-y^2}$	b) $5f_{x(x^2-y^2)}$	c) $4f_{x^3/z}$	d) None of these				
504. The kinetic energy of	an electron in the second Boh	r's orbit of a hydrogen ato	om is: $(a_0$ is Bohr's radius)				
a) $\frac{h^2}{4\pi^2 m a_0^2}$	b) $\frac{h^2}{16\pi^2 m a_0^2}$	h^2	h^2				
$\frac{a}{4\pi^2 m a_0^2}$	$\frac{16\pi^2 m a_0^2}{16\pi^2 m a_0^2}$	c) $\frac{h^2}{32\pi^2ma_0^2}$	d) $\frac{h^2}{64\pi^2 m a_0^2}$				
505. Number of electrons i	n nucleus of an element of ato	omic number 14 is:	· ·				
a) Zero	b) 14	c) 7	d) 20				
506. When an electron of	charge e and mass m move	es with velocity u about	the nuclear charge Ze in the				
circular orbit of radiu	s r , the potential energy of the	e electron is given by:	_				
a) Ze^2/r	b) $-Ze^2/r$	c) Ze^2/r^2	d) mu^2/r				
507. The orbital angular m	omentum of an electron revo	lving in a <i>p</i> -otbital is					
a) Zero	h	h	$_{1}$ 1 h				
	b) $\frac{h}{\sqrt{2\pi}}$	c) $\frac{h}{2\pi}$	$d)\frac{1}{2}\frac{h}{2\pi}$				
508. The ratio of specific c	harge e/m of a proton to that	of an $α$ -particle is:					
a) 1 : 4	b) 1 : 2	c) 1:1/4	d) 1 : 1/2				
509. Possible values of m' for a given value of n are:							
a) n^2	b) $2l + 1$	c) <i>n</i>	d) 2 <i>l</i>				
510. Common name for proton and neutron is							
a) Deutron	b) Positron	c) Meson	d) Nucleon				
511. Two electrons A and A	B in an atom have the following	ng set of quantum number	·s:				
A:3, 2, -2, +1/2,							

	Which statement is correct for A and B?							
	a) A and B have same energy							
	b) A has more energy than B c) B has more energy than A							
	-							
5 12	=	_	s same electron	4 :				
512		neus is p	proportional tov	wnere A is ma			1) 42/3	
Ľ 12	a) <i>A</i>	1 C	b) $A^{1/3}$. 1	c) A^2		d) $A^{2/3}$	
513			$_{z}A^{(+z-1)}$ can be g	aven by:				
	a) E_n for $A^{(+z)}$							
	b) E_n for $A^{(+z)}$							
	c) E_n for $A^{(+z)}$	$(z^{-1}) = \frac{1}{Z}$	$\frac{1}{2} \times E_n$ for H					
	d) E_n for $A^{(+z)}$	$z^{-1)} = \frac{1}{z}$	$\times E_n$ for H					
514	. The observati	ion that	the ground state	of nitrogen ato	om has 3 unpaire	ed electron	s in its electroni	с
	configuration	and not	t otherwise is asso	ociated with				
	a) Pauli's exc	-	-		b) Hund's rule o	of maximu	m multiplicity	
		_	rtainty relation		d) Ritz combina	-	•	
515			ectron in second		in the hydrogen	atom is -	–3.41eV. The en	ergy of the
		cond Bo	hr's orbit of He ⁺					
	a) –85 eV		b) –13 . 62 e		c) -1.70eV		d) –6.82 eV	
516			ought from an in	finite distance	e close to the nu	icleus of t	he atom, the en	ergy of the
	electron-nucl	-		A1 1				
		_	iter positive value	The same of the sa				
	-		aller positive valu					
	· ·	_	ater negative valu					
- 4-7			aller negative valu		ATION			
51/	=		ectron will have th	ne four quantu	im numbers:			
	n l m		b) 1 1	1 1/2	a) 2 0 0	ı 1/2	J) 2 1 0	. 1/2
51 Ω			b) 1 1 go to lower energ					
310	the following		go to lower eller	gy levels ill st a	and then to high	er energy i	levels according	to willen of
	a) Aufbau pri							
	b) Pauli's exc	-	rincinle					
		_	rmeipie kimum multiplicit	V				
	-		rtainty principle	9				
519	-	_	ectron increase, tl	he specific cha	rge:			
	a) Decreases		b) Increases	-	c) Remains san	ne	d) None of thes	e
520	•	e of mag	gnetic field p -orbi		•		,	
	a) Three		b) Two		c) One		d) Four	
521	-	spectrur	n least energetic t	ransition of el	•	ıd in:	,	
	a) Lyman ser	_	b) Balmer s		c) Bracket serie		d) Pfund series	
522	•		uration of an elen		•			
	a) Cationic fo		b) Anionic f		c) Ground state		d) Excited state	
523	. A body of ma	ss x kg i	s moving with a v		ms ⁻¹ . Its de-Bro	glie wavele	ength is 6.62×1	0^{-35} m.
	Hence, x is (h	a = 6.62	$\times 10^{-34} Js$)	-		-	_	
	a) 0.1 kg		b) 0.25 kg		c) 0.15 kg		d) 0.2 kg	
524		mber of	electrons in a sub	shell with $l =$	3 and $n = 4$ is:		-	
	a) 10		b) 12		c) 14		d) 16	
G	PLUS EDUCATION	ON	WEB: WWW.GF	PLUSEDUCATIO	ON.ORG	PHONE N	O: 8583042324	Page 34

			Opius Luucution		
	between the states $n =$	2 and $n = 3$ is E eV, in hy	drogen atom. The ionisation		
potential of H atom is: a) 3.2 <i>E</i>	b) 5.6 <i>E</i>	c) 7.2 <i>E</i>	d) 13.2 <i>E</i>		
-	_	of hydrogen in the Balmer s	-		
		• •			
a) $\frac{9R}{400}$ cm ⁻¹	b) $\frac{7R}{144}$ cm ⁻¹	c) $\frac{51}{4}$ cm ⁻¹	d) $\frac{5R}{36}$ cm ⁻¹		
527. The probability of findi	ng an electron residing in	a p_x orbital is not zero:	50		
a) In the <i>yz</i> plane	b) In the <i>xy</i> plane	c) In the y direction	d) In the z direction		
528. What is the electronic of	onfiguration of Mn ²⁺ ?				
a) [Ne] $3d^5$, $4s^0$	b) [Ar] $3d^5$, $4s^2$	c) [Ar] $3d^5$, $4s^0$	d) [Ne]3s ⁵ ,4s ²		
529. Number of neutron in 0	\mathbb{C}^{12} is				
a) 6	b) 7	c) 8	d) 9		
530. Which of the following	reaction led to the discove	ery of neutrons?			
a) $_{6}C^{16} + _{1}p^{1} \rightarrow _{7}N^{2}$	$^{14} + _{0}n^{1}$	b) $_4\mathrm{Be}^9 + _2\mathrm{He}^4 \rightarrow _6\mathrm{C}$	$2^{12} + {}_{0}n^{1}$		
c) $_{5}B^{11} + _{1}D^{2} \rightarrow _{6}C^{2}$	•	d) $_4\text{Be}^8 + _2\text{He}^4 \rightarrow _6\text{C}$			
	*	Its in the formation of a new			
a) Less number of neut					
b) Equal number of ele					
c) Lower mass number					
d) Higher atomic numb					
		e as that of the first Bohr's or	bit of hydrogen atom?		
a) $Li^{2+}(n=2)$	Total Control of the		d) $He^{+}(n=2)$		
, ,		s of chlorine $_{17}Cl^{35}$ and $_{17}Cl$			
a) Both have same ator	The second secon	o or other me 17 or and 17 or	•		
b) Both have the same	The second secon				
c) Both have same num					
d) Both have same num					
534. Which has minimum no		rons?			
a) Fe ³⁺	b) Co ³⁺	c) Co ²⁺	d) Mn ²⁺		
535. The total spin for atom	,	•	u) Mii		
a) $0,\pm 1,\pm 3,\pm 3/2$			d) ± 3 , ± 1 , 0, $\pm 3/2$		
			will do so when threshold is		
	reshold we need to increa		will do so when uneshold is		
a) Intensity	b) Frequency	c) Wavelength	d) None of these		
537. The <i>KE</i> of electron in H		c) wavelength	a) None of these		
a) 3rd orbit	e will be maximum in.				
b) 2nd orbit					
c) 1st orbit					
d) In orbit with $n = \infty$					
538. Which neutral atom ha	a 10 alactrone in its outon	ab all 2			
a) Cu ⁺		c) Mn ⁴⁺	d) Zn		
•	b) Pd	•	u) zn		
539. Rutherford scattering f	-	i scattering angles because			
	a) The kinetic energy of α - particles is larger				
	b) The gold foil is very thinc) The full nuclear charge of the target atom is partially screened by its electron				
•	ge of the target atom is pa	aruany screened by its electr	OH		
d) All of the above					
540. 3 <i>p</i> -orbital has :					
a) Two non-spherical r					
b) Two spherical nodes	;				

				Gplus Education		
	c) One spherical and one	non-spherical node				
	d) One spherical and two non-spherical nodes					
541.	Rutherford's alpha particl	e scattering experiment ev	entually led to the conclus	on that:		
	a) Mass and energy are re	lated				
	b) Electrons occupy space around the nucleus					
	c) Neutrons are buried deep into the nucleus					
	d) The point of impact wit	th matter can be precisely o	determined			
542.	The d -orbital with the ori	entation along X and Y axe	s is called:			
	a) d_{z^2}	b) d_{zx}	c) d_{yz}	d) $d_{x^2-y^2}$		
543.	Which of the following tra	nsitions are not allowed in	the normal electronic emi	ssion spectrum of an atom?		
	a) $2s \rightarrow 1s$	b) $2p \rightarrow 1s$	c) $3d \rightarrow 4p$	d) $5p \rightarrow 3s$		
544.	In an atom two electrons	move around the nucleus	s in circular orbits of radii	<i>R</i> and 4 <i>R</i> . The ratio of the		
	time taken by them to con	nplete one revolution is:				
	a) 1:4	b) 4:1	c) 1:8	d) 8 : 7		
545.	The value of Planck's cons	stant is 6.63×10^{-34} Js. The	e velocity of light is 3.0×1	0^8 m s ⁻¹ . Which value is		
	closest to the wavelength	in nanometre of a quantun	n of light with frequency of	$8 \times 10^{15} \mathrm{s}^{-1}$?		
	a) 2×10^{-25}	b) 5×10^{-18}	c) 4×10^{-8}	d) 3×10^7		
546.	The number of electrons a	and protons in an atoms of	third alkaline earth metal i	S		
	a) e 20, p 20	b) e 18, p 20	c) e 18, p 18	d) e 19, p 20		
547.	In photoelectric effect the	number of photo-electron	emitted is proportional to	:		
	a) Intensity of incident be	am				
	b) Frequency of incident h	peam				
	c) Velocity of incident bea	ım				
	d) Work function of photo	cathode				
548.	Which of the following sta	itements is wrong about ca	thode rays?			
	a) They produce heating effect					
	b) They carry negative cha		ATION			
	c) They produce X —rays when strike with material having high atomic masses					
	d) None of the above					
549.	In an atom no two electro	ns can have the same value	e for all the quantum numb	ers. This was proposed by:		
	a) Hund	b) Pauli	c) Dalton	d) Avogadro		
550.	The minimum energy req	uired to eject an electron fr	om an atom is called :			
	a) Kinetic energy	b) Electrical energy	c) Chemical energy	d) Work function		
551.	The orbital angular mome	entum for an electron revo	lving in an orbit is $\frac{h}{2\pi}\sqrt{l(l)}$	$\overline{+1}$). Thus momentum for a		
	s-electron is:		Zit			
	h	h $\sqrt{2}$ h	$\frac{1}{h}$	d) Zero		
	a) $\frac{h}{2\pi}$	b) $\sqrt{2} \cdot \frac{h}{2\pi}$	$\frac{c}{2} \cdot \frac{1}{2\pi}$,		
552.	552. The binding energy of the electron in the lowest orbit of the hydrogen atom is 13.6 eV. The energies					
	required in eV to remove $% \left(\mathbf{r}^{\prime }\right) =\left(\mathbf{r}^{\prime }\right) $	an electron from three low	est orbits of the hydrogen	atom are:		
	a) 13.6, 6.8, 8.4 eV	b) 13.6, 10.2, 3.4 eV	c) 13.6, 27.2, 40.8 eV	d) 13.6, 3.4, 1.5 eV		
553.	The probability of finding	the electron in the orbital	is			
	a) 100%	b) 90-95%	c) 70-80%	d) 50-60%		
554.	554. The correct de Broglie relationship is:					
	a) $\frac{\lambda}{mu} = p$	h) 1 – h	c) $\lambda = \frac{h}{mp}$	d) $\lambda m = \frac{u}{p}$		
	$\frac{u}{mu} = p$	$n = \frac{mu}{mu}$	mp	p		
555. The one electron species having ionisation energy of 54.4 eV is						
	a) H	b) He ⁺	c) B ⁴⁺	d) Li ²⁺		
556.		•	= -	electron of chlorine atom is		
	a) 2, 1, 0	b) 2, 1, 1	c) 3, 1, 1	d) 3, 2, 1		

			Gplus Education
557. If $'R_H'$ is the Rydberg con-		_	te of hydrogen atom is:
a) $\frac{R_H c}{h}$	b) $\frac{I}{R_H ch}$	c) $\frac{hc}{R_H}$	d) $-R_H hc$
558. The radius of hydrogen at	tom is 0.53Å. The radius of	₃ Li ²⁺ is of	
a) 1.27 Å	b) 0.17 Å	c) 0.57 Å	d) 0.99 Å
559. Among the following serie	es of transition metal ions, t	the one in which all metal i	ons have $3d^2$ electronic
configuration is (At. no. T	i=22, V=23, Cr=24, Mn=2!	5)	
a) Ti ³⁺ , V ²⁺ , Cr ³⁺ , Mn ⁴⁺	b) Ti ⁺ , V ⁴⁺ , Cr ⁶⁺ , Mn ⁷⁺	c) Ti ⁴⁺ , V ³⁺ , Cr ²⁺ , Mn ³⁺	d) Ti ²⁺ , V ³⁺ , Cr ⁴⁺ , Mn ⁵⁺
560. Total number of unpaired	l electrons, in an unexcited	atom of atomic number 29	is:
a) 1	b) 2	c) 3	d) 4
561. The work function for a	metal is 4 eV. To emit a p	hotoelectron of zero veloc	city from the surface of the
metal, the wavelength of	incident light should be:		
a) 2700 Å	b) 1700 Å	c) 5900 Å	d) 3100 Å
562. The wave number of the f	•		
a) 72755.5cm ⁻¹	b) 109678 cm ⁻¹	c) 82258.5 cm ⁻¹	d) 65473.6 cm ⁻¹
563. The nodes present in $3p$ -			
a) One spherical, one plan	nar	b) Two spherical	
c) Two planar		d) One planar	
564. Electronic configuration of		1	n . 2
a) 1s ¹	b) $2s^2$	c) 2s ¹	d) $1s^2$
565. The number of d -electron			12.6
a) 3	b) 4	c) 5	d) 6
566. For azimuthal quantum n			
a) 2	b) 6	c) Zero	d) 14
567. Which of the following se			1
a) $n = 5, l = 4, m = 0, s = 0$	$=+\frac{1}{2}$	b) $n = 3, l = 3, m = +3, s$	$=+\frac{1}{2}$
(2) m = 6 l = 0 m + 1 a = 0	+ ½ Delus EDUC	d) $n = 4, l = 2, m = \pm 2, s$	- 0
	-	$u_j n = 4, i = 2, m = 12, 3$	_ 0
568. Correct energy value orde	er is		
a) $ns, np, nd, (n-1)f$		b) $ns, np, (n-1)d, (n-2)$	**
c) $ns, np, (n-1)d, (n-1)d$	=	d) $ns, (n-1)d, np, (n-1)d$	
569. Which hydrogen like spec			
a) $n = 2$, Li ²⁺	b) $n = 2$, Be ³⁺	c) $n = 2$, He ⁺	d) $n = 3$, Li^{2+}
570. The nucleus and an atom			
		n is 1 A. If the mass no. is 6	4, the fraction of the atomic
volume that is occupied b	•) 2 F 10=2	D 4 25 40-13
a) 1.0×10^{-3}	b) 5.0×10^{-5}	c) 2.5×10^{-2}	d) 1.25×10^{-13}
571. The expression Ze gives:			
 a) The charge of α-particle b) The charge on an atom 			
c) The charge on the nucl			
d) The kinetic energy of a			
572. Which has the highest nu	-	.?	
a) Mn	b) Mn ⁵⁺	c) Mn ³⁺	d) Mn ⁴⁺
573. The ratio between the new		•	•
is:	present in our boll di	respect to ut	maddod of La ana ao
a) 3 : 7	b) 7:3	c) 3:4	d) 6:28
574. The last electron placed in	•	,	•

c ation atoms
atoms
atoms
atoms
atoms
12.2 eV
ll be
ties, are
tively,
uantum
ted.
, .1

 $592.\,The$ number of electrons and neutrons of an element is 18 and 20 respectively. Its mass number is

591. Suppose a completely filled or half filled set of p or d-orbitals is spherically symmetrical. Point out the

c) Cl⁻

b) C

species, which is spherical symmetrical?

d) Fe

				Gplus Education
	a) 2	b) 17	c) 37	d) 38
593	. Which d -orbital has differ	ent shape from rest of all <i>d</i>	-orbital?	
	a) $d_{x^2-y^2}$	b) d_{z^2}	c) d_{x^2y}	d) d_{xz}
594	. Photoelectric effect is the	phenomenon in which:		
	a) Photons come out of a	metal when it is hit by a bea	am of electrons	
	b) Photons come out of th	e nucleus of an atom under	the action of an electric fi	eld
	c) Electrons come out of a incident light wave	a metal with a constant velo	ocity which depends on the	frequency and intensity of
		n metal with different veloc	ities not greater than a cer	tain value which depends
		of the incident light wave a	=	r
595		ons of sublevel in n^{th} orbit		
	a) 2n	b) $2l + 1$	c) n^2	d) $2n^2$
596		rgy that photons must poss	,	•
		shold frequency for platinu	• •	
	a) 3.6×10^{-13} erg	b) $8.2 \times 10^{-13} \text{erg}$	c) $8.2 \times 10^{-14} \text{erg}$	d) $8.6 \times 10^{-12} \text{erg}$
597	2	ogen atom, the wave function	,	,
				nucleus to the probability of
	finding it at a_0 ?	1	O	1
	a) <i>e</i>	b) <i>e</i> ²	c) $\frac{1}{e^2}$	d) Zero
500	. Millikan's oil drop experir	mont is used to find:	e^2	
770	a) e/m ratio of electron	nent is used to find.	b) Electronic charge	
	c) Mass of an electron		d) Velocity of an electron	
599	_	unpaired electrons presen	•	
,,,	a) 5	b) 7	c) 10	d) 6
500			,	orbit characterised by the
	principle quantum numb ϵ			orbit enaracterista sy the
	a) n^{-1}	b) <i>n</i>	c) n^{-2}	d) n^2
501		g has unit positive charge a		-,
	a) Electron	b) Neutron	c) Proton	d) None of these
502	-	light is 6×10^{14} Hz. Its wave		
	a) 500 nm	b) 5 nm	c) 50,000 nm	d) None of these
503		of quantum numbers, whic	h one is incorrect for $4d$ –	-
	-	b) 4, 2, 1, $+\frac{1}{2}$		
	4	<u>~</u>	<u>~</u>	2
504	.Nitrogen has the electro	onic configuration $1s^2$, $2s$	$^{2} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{1}$ and not 1.	s^2 , $2s^2$ $2p_x^2$ $2p_x^1$ $2p_z^0$. It was
	proposed by:			
	a) Aufbau principle			
	b) Pauli's exclusion princi	ple		
	c) Hund's rule			
	d) Uncertainty principle			
605		g sets of ions represents a		
	a) K^+ , Cl^- , Ca^{2+} , Sc^{3+}	b) Ba ²⁺ , Sr ²⁺ , K ⁺ , S ²⁻	c) N^{3-} , O^{2-} , F^- , S^{2-}	d) Li^+ , Na^+ , Mg^{2+} , Ca^{2+}

WEB: WWW.GPLUSEDUCATION.ORG

607. The principle, which gives a way to fill the electrons in the available energy level is:

c) H⁺

b) He⁺

d) He²⁺

a) Hund's rule

606. The e/m ratio is maximum for:

b) Pauli's exclusion principle

Golus Education

				Opius Luucution
	d) None of the above			
608	. The ground state electror	nic configuration of nitroger		as
	a) 11 11 1 1	1	b) 11 11 1 1	l
	c) 11 11 1 1	l	d) All of the above	_
609		on of a minute particle of	mass 25 g in space is 10	⁻⁵ m. The uncertainty in its
	velocity (in m s $^{-1}$) is:			
	a) 2.1×10^{-34}	b) 0.5×10^{-34}	c) 2.1×10^{-28}	d) 0.5×10^{-23}
610	. Out of first 100 elements,	number of elements having	g electrons in 3 d -orbitals an	e:
	a) 80	b) 10	c) 100	d) 60
611	. Number of electrons in 1.			
	a) 6.02×10^{23}	b) 6.02×10^{24}	c) 6.02×10^{22}	d) 6.02×10^{25}
612	. The number of orbitals pi	resent in the shell with $n =$	4 is	
	a) 8	b) 16	c) 18	d) 32
613	. Number of electrons in th	e outermost orbit of the ele	ement of atomic number 15	is:
	a) 7	b) 5	c) 3	d) 2
614	. The angular momentum o	of electron of H-atom is pro	-	
	a) r^2	b) $\frac{1}{r}$	c) \sqrt{r}	$\frac{1}{2}$
		•	-) \ '	d) $\frac{1}{\sqrt{r}}$
615	. The total number of elect			
	(Given density of 12 Mg ²⁴			
	a) 0.6 N	b) 6 N	c) 2 N	d) 3 N
616	_	mber represents the electro	on of the lowest energy?	
	a) $n = 2, l = 0, m = 0, s =$			
	b) $n = 2, l = 1, m = 0, s =$	The state of the s		
	c) $n = 4, l = 0, m = 0, s =$			
	d) $n = 4, l = 0, m = 0, s =$			
617		a particle and a wave. This	71. 1 1 7 1 15 1	
	a) Heisenberg	b) Gilbert N. Lewis	c) de-Broglie	d) L. Rutherford
618	=	isoelectronic with carbon a		12.1.21
	a) N ⁺	b) 0 ²⁻	c) Na ⁺	d) Al ³⁺
619		on for a dust particle $(m =$		cm and velocity = 10^{-4}
		in measurement of velocity		
	a) 5.27×10^{-4} cm	b) 5.27×10^{-5} cm	c) 5.27×10^{-6} cm	d) 5.27×10^{-7} cm
620	-	ate of Dalton's atomic theor	-	
	•	ted nor destroyed in a cher		
		he relative number and kin		
	•	are alike, including their ma		
	•	sed of extremely small part		
621	-	um numbers (n, l, m, s) des	_	-
	a) n	b) <i>l</i>	c) m	d) s
622	,	guration of an element with		12 0 12 1 1 1
	a) $3d^5$	b) $3d^3$, $4s^2$	c) $3d^2$, $4s^14p^1$	d) $3d^3$, $4s^14p^1$
623	-	en annihilated completely g		
	a) mc^2	b) m/c^2	c) mc	d) c^2/m
624	=	antum number for the vale	-	•
	a) $n = 5, l = 0, m = 0, s = 0$	•	b) $n = 5, l = 1, m = 1, s =$	-
<u></u>	c) $n = 5, l = 1, m = 1, s =$	= +1/2	d) $n = 6, l = 0, m = 0, s =$	+1/2
625	A photon is :			
	a) A quanta of light (or el	actromagnatic) anarmi		

			Gplus Education
b) A quanta of matter			·
c) A positively charged	l particle		
d) An instrument for m	neasuring light intensity		
626. Which orbital is dumb-	bell shaped?		
a) <i>s</i>	b) $2p_{\nu}$	c) 3s	d) $3d_z^2$
627. Aufbau principle does r	not give the correct arrai	ngement of filling up of ator	nic orbital's in
a) Cu and Zn	b) Co and Zn	c) Mn and Cr	d) Cu and Cr
628. Ordinary oxygen conta	ins:	•	•
a) Only 0-16 isotope			
b) Only 0-17 isotope			
c) A mixture of 0-16 ar	nd 0-18 isotopes		
d) A mixture of 0-16,0-	-17 and 0-18 isotopes		
629. The approximate quan	tum number of a circula	r orbit of diameter, 20.6 nm	of the hydrogen atom according
to Bohr's theory is:			
a) 10	b) 14	c) 12	d) 16
630. A p-orbital in a given sh	nell can accommodate uյ	oto	
a) Four electrons		b) Two electrons wit	h parallel spin
c) Six electrons		d) Two electrons wit	h opposite spin
	celerated through a pote	ential difference of 10,000 ve	olt. The de-Broglie wavelength
of the electron beam is			
a) 0.123 A°	b) 0.356 A°	c) 0.186 A°	d) 0.258 A°
632. Transition of electron f	from $n = 3$ to $n = 1$ leve	l results in:	
a) X-ray spectrum	b) Emission spectru	m c) Band spectrum	d) Infrared spectrum
633. Atomic radius is of the	order of 10 ^{–8} cm and n	uclear radius of the order o	of 10^{-13} cm. The fraction of atom
occupied by nucleus is:			
a) 10 ⁻⁵	b) 10 ⁵	c) 10 ⁻¹⁵	d) None of these
634. The ratio of the masses	s of proton and neutron a	are:	
a) > 1	b) < 1	c) = 1	$\mathrm{d})>\sqrt{1}$
635. If the mass number of a			-
a) Number of $_{-1}e^0 = 1$			
b) Number of protons (
c) Number of $_0n^1 = W$	· ·		
d) Number of $_0n^1 = N$			
636. For a particular value of		ımber, the total number of r	nagnetic quantum number
values are given by	•		
a) $l = \frac{m+1}{2}$	b) $l = \frac{m-1}{2}$	c) $l = \frac{2m+1}{2}$	d) $m = \frac{2l+1}{2}$
a) $t = \frac{1}{2}$	b) $t = \frac{1}{2}$	c) $t = \frac{1}{2}$	$a_j m = \frac{1}{2}$
637. The relation between e	nergy of a radiation and	its frequency was given by	:
a) De Broglie	b) Einstein	c) Planck	d) Bohr
638. The filling of $4p$ -sublev	el starts in the element o	of atomic number:	
a) 29	b) 31	c) 35	d) 19
639. The angular speed of the		oit of Bohr hydrogen atom i	S:
a) Directly proportional	al to n		
b) Inversely proportion			
c) Inversely proportion			
d) Inversely proportion			
640. The chlorine atom diffe	ers from chloride ion in t	the number of:	
a) Protons	b) Neutrons	c) Electrons	d) None of these
641. If the ionisation potent	ial for hydrogen atom is	13.6 eV, then the ionisation	potential for He ⁺ ion should be

C	I	- -1-	- :	
GDI	IUS	cau	ıcati	on

			Gplus Education
a) 13.6 eV	b) 6.8 eV	c) 54.4 eV	d) 72.2 eV
642. The λ for H_{α} line of	Balmer series is 6500 Å, Tl	hus, λ for $H_{oldsymbol{eta}}$ line of Balmer :	series is :
a) 4814 Å	b) 4914 Å	c) 5014 Å	d) 4714 Å
643. According to Bohr's	theory, the angular mome	ntum for an electron of 3rd	orbit is
a) 3 h	b) 1.5 <i>h</i>	c) 9 h	d) $2\frac{h}{\pi}$
•	,		π
644. The de-Broglie equa	ition applies	la) Translandorum andra	
a) To protons only	1	b) To electrons only	
c) All the material o		d) To neutrons only	
	ing electronic configuration b) $1s^2$, $2s^22p^6$		4) 1 -2 2 -222 2 -1
a) $1s^2$, $2s^2$			•
a) 14		ccommodated in a g -subsherm	
•	b) 18 state electronic configurat	c) 12	d) 20
a) [Ar] $3d^54s^1$	b) [Ar] $3d^44s^2$		d) [Ar] $4d^54s^1$
		6 eV. What will be the ionisa	
a) 13.6 eV	b) 54.4 eV	c) 122.4 eV	d) Zero
	_	-	unber of spectral lines emitted is
equal to:	on is excited by giving o.	4 ev of energy, then the nu	imber of spectral files efficted is
a) None	b) Two	c) Three	d) Four
•	•	pability of finding electron. I	
a) Inside the nucleu		ability of illianing electron. I	es value depends.
b) Far from the nucl		. >	
c) Near the nucleus			
d) Upon the type of			
	momentum of an electron	in a <i>d</i> -orbital is	
			,, 2h
a) $\sqrt{6}\frac{h}{2\pi}$	b) $\sqrt{2}\frac{h}{2\pi}$	c) $\frac{h}{2\pi}$	d) $\frac{2h}{2\pi}$
652. The space between	the proton and electron in	hydrogen atom is:	
a) Filled with air			
b) Empty			
c) Filled with magn			
d) None of the abov			
· ·	• •	with electrons, the next elec	
a) 5 <i>s</i>	b) 6 <i>s</i>	c) 5 <i>d</i>	d) 5 <i>p</i>
	aired electrons in Fe ³⁺ ion i		
a) 3	b) 1	c) 5	d) 2
	•	Fe = 26) is not equal to that	of the:
a) <i>p</i> -electrons in Ne	•		
b) s-electrons in Mg	•		
c) <i>d</i> -electrons in Fe			
d) p-electrons in Cl			
	-	r is 1, magnetic quantum nu	
a) -1 only	b) +1 only	c) $+1, 0, -1$	d) +1 and –1
	= =	= 2, then energy emitted is $\frac{10.2 \text{ eV}}{2}$	
a) 1.9 eV	b) 12 eV	c) 10.2 eV	d) 0.65 eV
658. The $n + l$ value for t		c) 3	d) 1
a) 4 659 The maximum numl	b) 7 her of sublevels, orbitals ar	ເງິວ nd electrons in N-shell of an	d) 1 atom are respectively
	aci vi audieveia. Vi Ditais di	14 CICCH OHS HI /V SHCH OF ALL	LALVIII ALC LUSUEULIVEIV

	•	_ ,		
GDI	us	Eau	ıcatic	าก

			Gpius Education
a) 4, 12, 32	b) 4, 16, 30	c) 4, 16, 32	d) 4, 32, 64
-	nass of 1.0 mg has a velocity of	3600 km/h, Calculate the	e wavelength of the particle
$(h = 6.626 \times 10^{-27})$	erg — s)		
a) 6.626×10^{-28} cm	b) 6.626×10^{-29} cm	c) 6.626×10^{-30} cm	d) 6.626×10^{-31} cm
661. The target used for J	production of X-ray beam must	have:	
a) High melting poir	nt and high atomic number		
b) High melting poir	nt and low atomic number		
c) Low melting poin	t and low atomic number		
d) Low melting poin	t and high atomic number		
662. When photons of en	ergy 4.25eV strike the surface	of a metal A, the ejected	photoelectrons have maximum
kinetic energy, T_A	(expressed in eV) and de Bro	glie wavelength λ_A . The	e maximum kinetic energy of
photoelectrons libe	rated from another metal B by	photons of energy 4.7	0V is $T_B = T_A - 1.50$ eV. If the
	th of these photoelectrons is $\lambda_{\scriptscriptstyle E}$		
a) The work functio			
b) The work functio	n of <i>B</i> is 3.70 eV		
c) $T_A = 2.00 \text{eV}$			
d) $T_B = 0.5 \text{eV}$			
	he of the $3d$ -orbitals, which of th	e quantum number is no	ot possible?
a) $l = 1$	b) $n = 3$	c) $m = 1$	d) $m = 2$
664. The momentum of a	photon is p . The corresponding	g wavelength is:	•
a) <i>h/p</i>	b) <i>hp</i>	c) p/h	d) h/\sqrt{p}
	n and an alpha particle have KE		- · · · ·
order of their de-Bro		or rob, ib und b respec	ervery, what is the quantative
		c) $\lambda_p < \lambda_e < \lambda_\alpha$	d) $\lambda_{\alpha} < \lambda_{e} \approx \lambda_{p}$
•	our quantum number are possib	, r	-
a) 4	b) 3	c) 2	d) None of these
-			d) None of these
a) Zn ²⁺	ng has the maximum number o b) Fe ²⁺		d) Cu ⁺
•	ified by quantum number n and	,	a) ca
V. $n = 3; l = 2$	med by quantum number <i>n</i> and	ι,	
V. $n = 5, l = 2$ VI. $n = 5; l = 0$			
VII. $n = 4$; $l = 1$			
VII. $n = 4; l = 1$ VIII. $n = 4; l = 2$			
IX. $n = 4$; $l = 2$			
	er of increasing energy, as		
a) I <v<iii<iv<ii< td=""><td>b) I<v<iii<iv< td=""><td>c) V<i<iii<ii< td=""><td>d) V<i<ii<iii<iv< td=""></i<ii<iii<iv<></td></i<iii<ii<></td></v<iii<iv<></td></v<iii<iv<ii<>	b) I <v<iii<iv< td=""><td>c) V<i<iii<ii< td=""><td>d) V<i<ii<iii<iv< td=""></i<ii<iii<iv<></td></i<iii<ii<></td></v<iii<iv<>	c) V <i<iii<ii< td=""><td>d) V<i<ii<iii<iv< td=""></i<ii<iii<iv<></td></i<iii<ii<>	d) V <i<ii<iii<iv< td=""></i<ii<iii<iv<>
•	ble ion amongst the following	c) v <i<iii<ii< td=""><td>u) v<i<ii>ii<iii< ii=""></iii<></i<ii></td></i<iii<ii<>	u) v <i<ii>ii<iii< ii=""></iii<></i<ii>
a) Li	b) Be ⁻	c) B ⁻	d) C ⁻
•	m represents the number of its:	•	u) C
a) Protons only	in represents the number of its.		
b) Protons and neut	rone		
c) Protons and elect			
d) Neutrons and elect			
671. The equation, $\lambda = \frac{\hbar}{m}$			
a) Newton	b) de-Broglie	c) Planck	d) Heisenberg
	of hydrogen atom is 13.6 eV. Hy	_	
_	t of energy 12.1 eV. The spectra	al lines emitted by hydro	gen according to Bohr's theory
will be:			

_		_ ,			
Gpl	IIIC	HAI	IICO	ITIN	n
UDI	us	Lu	иси	ω	

			Gplus Education
a) One	b) Two	c) Three	d) Four
673. The line spectrum obser	ved when electron falls fror	n the higher level into <i>L</i> -lev	vel is known as:
a) Balmer series	b) Paschen series	c) Bracket series	d) None of these
674. Atomic weight of Ne is 2	0.2. Ne is a mixture of Ne ²⁰	and Ne ²² . Relative abunda	nce of heavier isotope is:
a) 90	b) 20	c) 40	d) 10
675. The number of waves in	an orbit are		•
a) n^2	b) <i>n</i>	c) $n-1$	d) $n-2$
676. An ion Mn^{a+} has the mag	gnetic moment equal to 4.9	B. M. The value of <i>a</i> is:	
a) 3	b) 4	c) 2	d) 5
677. The number of electrons	$\sin \left[{}_{19}K^{40} \right]^{-}$ is:		,
a) 19	b) 20	c) 18	d) 40
678. p-orbitals of an atom in	presence of magnetic field a	re;	,
a) Three fold degenerate			
b) Two fold degenerate			
c) Non-degenerate			
d) None of these			
679. In 'aufbau principle', the	term aufbau represents:		
a) The name of scientist			
b) German term meaning	g for building up		
c) The energy of electron	n		
d) The angular momentu	ım of electron		
680. The velocity of electron	in the hydrogen atom is 2.2	$ imes 10^6$ m/s. The de Broglie	wavelength for this electron
is:	Section 1	7	
a) 33 nm	b) 45.6 nm	c) 23.3 nm	d) 0.33 nm
681. An atom has net charge of	of -1 . It has 18 electrons an	d 20 neutrons. Its mass nu	mber is:
a) 37	b) 35	c) 38	d) 20
682. Which of the following is	related with both wave na	ture and particle nature?	
a) Interference	b) $E = mc^2$	c) Diffraction	d) E = hv
683. An electron is moving in	Bohr's fourth orbit. Its de-F	Broglie wavelength is λ . Wh	at is the circumference of
the fourth orbit?			
a) $\frac{2}{-}$	b) 2 λ	c) 4 λ	d) $\frac{4}{\lambda}$
a) $\frac{2}{\lambda}$			
684. Which of the following s	ets of quantum numbers re	presents an impossible arra	angement?
n l m s		1	
a) 3 2 $-2 + \frac{1}{2}$ c) 4 0 0 $-\frac{1}{2}$		b) 3 2 $-3 + \frac{1}{2}$ d) 5 3 0 $-\frac{1}{2}$	
c) 4 0 0 $-\frac{1}{2}$		d) 5 3 0 $-\frac{1}{2}$	
685. A cricket ball of 0.5 kg is		-	sociated with its motion is
a) 0.01 cm	b) 6.6×10^{-34} m	c) 1.32×10^{-35} m	d) 6.6×10^{-28} m
686. The ratio between kine	•		-
Bohr's model is:	the energy and the total er	iergy of the electrons of i	ly drogen atom according to
a) 1: -1	b) 1:1	c) 1:2	d) 2:1
687. Binding energy of hydro		,	•
a) 13.6 eV	b) 27.2 eV	c) 54.4 eV	d) 3.4 eV
688. Calculate the velocity of			•
$(h = 6.626 \times 10^{-27} \text{erg-s})$		5 or oito iiii 1.1033 oi dii (wood on to vito y to gi
	b) 2.062×10^{-15} cm. s ⁻¹	c) $4.84 \times 10^8 \text{ cm s}^{-1}$	d) 2.062×10^{-9} cm s ⁻¹
689. Einstein's theory of pho			a) 2,002 × 10 CIII, 3
a) Maxwell's electromag		b) Planck's quantum theo	ary of light
aj manwen s electroniag	near theory of light	b) I failer a quantum thet	ory or name

			Gplus Education
c) Both of the above		d) None of the above	
690. Which orbital does	not possess angular node?		
a) <i>s</i>	b) <i>p</i>	c) <i>d</i>	d) <i>f</i>
691. The azimuthal quan	tum number for an electron :	in a 5 d -orbital is:	
a) May be zero			
b) Two			
-	ue less than 5 but greater tha	n zero	
d) May be $+5$ to -5	9		
$(h = 6.6 \times 10^{-34} \text{kg})$	$m^2 - s$)		with a speed of 10^5 cm s ⁻¹ ?
a) 2×10^{-12} m		c) 1×10^{-10} m	
	t X has configuration [Ar]3 d^5		
a) 22	b) 25	c) 26	d) 19
· · · · · · · · · · · · · · · · · · ·	gy is possessed by an electro	•	
a) In nucleus		b) In ground state	
c) In first excited sta		d) At infinite distance	
		of the hydrogen atom are	e in the ratio 1 : 4. The energy
difference between	•		
a) either 12.09 eV o b) either 2.55 eV or			
c) either 13.6 eV or			
d) either 3.4 eV or 0			
•		n=40 to $n=2$ of He ⁺ is equal	al to the transition in H atom
	hich of the following?	n To to n 2 of the 15 equi	ar to the transition in it atom
	b) $n = 2$ to $n = 1$	c) $n = 3$ to $n = 2$	d) $n = 4$ to $n = 3$
	number of the element with M		
698. The first emission li	b) 28 ne of Balmer series for H-spe	ectrum has the wave no. equ	ual to:
	b) $\frac{7R_{\rm H}}{144}$ cm ⁻¹		d) $\frac{5R_{\rm H}}{36}$ cm ⁻¹
100	111	*	30
	es not form part of Bohr's m		•
	ctrons in the orbit is quantize		
•	ne orbit nearest the nucleus i	•	
•	in different orbits around th		
•	velocity of the electrons in the		ned simultaneously
700. If r is the radius of f	irst orbit, the radius of n^{th} or		
a) rn^2	b) <i>rn</i>	c) $\frac{r}{n}$	d) $r^2 n^2$
701. Neutron was discov	ered by:	70	
a) Thomson	b) Chadwick	c) Bohr	d) Rutherford
702. The frequency of ra	diations emitted when electr	on falls from $n = 4$ to $n = 1$	in H atom would be:
(Given E_1 for $H = 2$.	$18 \times 10^{-18} \text{ J atom}^{-1} \text{ and } h =$	$= 6.625 \times 10^{-34} \text{ Js.}$	
a) $1.54 \times 10^{15} \text{ s}^{-1}$	b) $1.03 \times 10^{15} \text{ s}^{-1}$	c) $3.08 \times 10^{15} \text{ s}^{-1}$	d) $2.0 \times 10^{15} \text{ s}^{-1}$
703. Nuclides:			
a) Have same numb	er of protons		
b) Have specific ato	mic numbers		
	mic number and mass numbe	ers	
d) Are isotopes			
	hich cation is isoelectronic w		
a) NaCl	b) CsF	c) NaI	d) K ₂ S

			Gpius Education
	guration of silver atom in gro		
a) [Ar]3 d^{10} ,4 s^{1}		c) $[Kr]4d^{10},5s^1$	
	orbital "A" are 3 and 2 and of	another orbital "B" are 5	and 0. The energy of:
a) B is more than A			
b) A is more than B			
c) A and B are of sa			
d) None of the abov			
707. Which is correct in o	•		
a) They are sphericate	al		
b) They have a stroi	ng directional character		
c) They are five fold	degenerate		
d) They have no dir	ectional character		
708. X-rays and γ -rays of	f same energies may be disting	guished by:	
a) Velocity	b) Ionizing power	c) Intensity	d) Method of production
709. A neutral atom alwa	ys consist of :		
a) Protons			
b) Neutrons + proto	ons		
c) Neutrons + elect	rons		
d) Neutrons + proto	ons + electrons		
710. A photon of 300 n	m is absorbed by a gas th	en re-emits two photor	ns. One re-emitted photon has
wavelength 496 nm	, the wavelength of second re-	emitted photon is:	
a) 757	b) 857	c) 957	d) 657
711. If uncertainties in the	ne measurement of position ar	nd momentum of an elect	ron are equal, the uncertainty in
the measurement of	velocity is		
a) $8.0 \times 10^{12} \text{ ms}^{-1}$	b) $4.2 \times 10^{10} \text{ ms}^{-1}$	c) $8.5 \times 10^{10} \text{ ms}^{-1}$	d) $6.2 \times 10^{10} \text{ ms}^{-1}$
712. If the quantum num	ber for the 5th electron in carb	oon atoms are 2,1,1,+1/2	, then for the 6th electron, these
values would be			
a) 2, 1, 0, $-\frac{1}{2}$	b) 2, 0, 1, $+\frac{1}{2}$	1	d) 2, 1, -1 , $+-\frac{1}{2}$
a) 2, 1, 0, $-\frac{1}{2}$	$0, 2, 0, 1, +\frac{1}{2}$	c) 2, 1, 1, $-\frac{1}{2}$	$a_{1} 2, 1, -1, + -\frac{1}{2}$
	drink BaSO ₄ solution for exa	mining the stomach by X-	rays, because X-rays are:
a) Less absorbed by	heavy atoms		
b) More absorbed b	y heavy atoms		
c) Diffracted by hea	vy atoms		
d) Refracted by hea	vy atoms		
714. Which of the follow	ing is correct for number of el	ectrons, number of orbita	als respectively in n -orbit?
a) 4, 4 and 8	b) 4, 8 and 16	c) 32, 16 and 4	d) 4, 16 and 32
715. Which has highest e	/m ratio?		
a) He ²⁺	b) H ⁺	c) He ⁺	d) H
716. The quantum numb	er sufficient to describe the el	ectron in H atom is:	
a) <i>n</i>	b) 1	c) <i>m</i>	d) <i>s</i>
717. If an isotope of hydr	ogen has two neutrons in its a	atom, its atomic number a	and mass number will be:
a) 2 and 1	b) 3 and 1	c) 1 and 1	d) 1 and 3
718. The radius of hydro	gen atom in the ground state i	is 0.53Å. The radius of Li ²	the ion (atomic number = 3) in a
similar state is			, ,
a) 0.176 Å	b) 0.30 Å	c) 0.53 Å	d) 1.23 Å
719. The speed of the cat		,	-
a) Equal to light	,		
b) Less than light			
c) Greater than ligh	t		

			Gplus Education
d) May be less than, grea	ter than or equal to light		-
720. Bohr model can explain			
a) The solar spectrum			
b) The spectrum of hydr	ogen molecule		
c) Spectrum of any atom	or ion containing one elec	tron only	
d) The spectrum of hydr	ogen atom only		
721. Which represents the co	rrect set up of the four qua	ntum numbers of 4 <i>s</i> -electr	on?
a) 4, 3, 2, +1/2	b) 4, 2, 1, 0	c) $4, 3, -2, +1/2$	d) 4, 0, 0, 1/2
722. Electron in the atom are	held by:		
a) Coulombic forces	b) Nuclear forces	c) Gravitational forces	d) Van der Waals' forces
723. According to Bohr's theo	ory, the angular momentun	n of an electron in 5th orbit	is
a) $25\frac{h}{\pi}$	b) $1.0 \frac{h}{\pi}$	c) $10\frac{h}{\pi}$	d) $2.5 \frac{h}{\pi}$
70	π	π	π
724. Positron is:			
a) Electron with +ve cha	arge		
b) A helium nucleus	b		
c) A nucleus with two pr			
d) A nuclear with one ne	-		
725. The line spectra of two e			
•	nave the same number of no	eutrons	
b) They have different m	rons are at different energ	y lovole	
d) All of the above	Tons are at unferent energy	y levels	
726. Which of the following expressions of the following expressions are supplied to the following expressions and the following expressions are supplied to the following expressions and the following expressions are supplied to the following expression are suppli	vproceione gives the do-Rr	aglio rolationshin?	
h	h	h	v
a) $p = \frac{h}{mv}$	b) $\lambda = \frac{h}{mv}$	c) $\lambda = \frac{n}{mn}$	d) $\lambda m = \frac{v}{v}$
727. Three electrons in p -sub		•	r
a) $n=2$	b) $m=0$	c) $l=0$	d) $s = -1/2$ or $+1/2$
728. The number of vacant d -			-,, -
a) 2	b) 3	c) 1	d) 4
729. The planck's constant ha	•	,	,
a) Work	b) Energy	c) Angular momentum	d) Linear momentum
730. The quantum numbers o			•
a) 2, 1, 0, +1/2	b) 3, 1, 1, +1/2	c) $3, 0, 0, +1/2$	d) 3, 1, 0, +1/2
731. The charge to mass ratio		tely the charge to mass i	ratio of protons
a) Six times	b) Four times	c) Half	d) Two times
732. The number of photons of	emitted per second by a 60	W source of monochromat	ic light of wavelength 663
nm is $(h = 6.63 \times 10^{-34})$	Js)		
a) 4×10^{-20}	b) 1.54×10^{20}	c) 3×10^{-20}	d) 2×10^{20}
733. Density of the electron is	S:		
a) $2.77 \times 10^{12} \text{ g/mL}$	b) 4.38×10^{17} g/mL	c) 2.17×10^{14} g/mL	d) None of these
734. The wavelength of the ra	ndiation emitted, when in a	hydrogen atom electron fa	lls from infinity to stationary
state 1, would be (Rydbe	erg constant = 1.097×10^7 i	m^{-1})	
a) 91 nm	b) 192 nm	c) 406 nm	d) 9.1×10^{-8} nm
735. The number of electrons	accommodated in an orbit	with principle quantum nu	ımber 2, is
a) 2	b) 6	c) 10	d) 8
736. Suppose 10^{-17} J of light	energy is needed by the int	erior of a human eye to see	an object. Calculate the
number of photons of gr	een light ($\lambda = 550 \text{ nm}$) ne	eded to generate this minin	num amount of energy
a) 26	b) 27	c) 28	d) 29

Gnlus Education

				Opius Luucution		
737. A 0.66 kg ball is moving with	=		-			
	6.6×10^{-34} m	c) 1.0×10^{-3}	⁵ m	d) 1.0×10^{-32} m		
	738. Which of the following is correct?					
a) ₁ H ¹ and ₂ He ³ are isotope		b) ₆ C ¹⁴ and				
c) $_{19}\mathrm{K}^{39}$ and $_{20}\mathrm{Ca}^{40}$ are isote	c) $_{19}$ K ³⁹ and $_{20}$ Ca ⁴⁰ are isotones			odiaphers		
739. Nuclear theory of the atom w	as put forward by					
a) Rutherford b)	Aston	c) Neils Bohr		d) J.J. Thomson		
740. Which of the following is not	permissible arrangeme	nt of electrons	in an atom?			
a) $n = 3, l = 2, m = -2, s = -2$	- 1/2					
b) $n = 4, l = 0, m = 0, s = -1$	•					
c) $n = 5, l = 3, m = 0, s = +1$,					
d) $n = 3, l = 2, m = -3, s = -3$	•					
741. The measurement of the elec	•	ited with an ur	ncertainty in	momentum, which is equal		
to 1×10^{-18} g cm s ⁻¹ . The ur			J	, 1		
(mass of an electron is 9×10^{-1}	-	y				
	$1 \times 10^5 \text{cm s}^{-1}$	c) 1×10^{11} cm	$n s^{-1}$	d) $1.1 \times 10^9 \text{cm s}^{-1}$		
742. The two electrons ins K-sub s		c) 1 × 10 ci				
a) Principal quantum number		b) Azimuthal	auantum nu	mher		
c) Magnetic quantum numbe		d) Spin quant		illibei		
743. An atom having even number		u) Spin quant	din number			
a) Diamagnetic	of elections may be.					
b) Paramagnetic	atia.					
c) Diamagnetic or paramagne	euc					
d) None of the above						
744. Dual nature of particles was p) D 1:				
-	Lowry	c) de-Broglie		d) Schrodinger		
745. In photoelectric effect, the nu			PN: 10			
a) Intensity of incident beam		b) Frequency		beam		
c) Wavelength of incident be		d) All of the a				
746. A ball of mass 200 g is movi	-	10 m sec^{-1} . If t	the error in	measurement of velocity is		
0.1%, the uncertainty in its p			_			
a) 3.3×10^{-31} m b)		-	⁵ m	d) 2.64×10^{-32} m		
747. The number of radial nodes of	of 3s and 2 p -orbitals are	e respectively				
	0, 2	c) 1, 2		d) 2, 11		
748. The mass of a photon with wa	avelength 3.6 Å is					
,	$3.60 \times 10^{-29} \text{kg}$	c) 6.135×10^{-1}) ^{–33} kg	d) 3.60×10^{-27} kg		
749. Correct set of four quantum r	numbers of a 4 d -electro	n is:				
a) 4, 3, -2, 1/2 b)	4, 2, -1, 0	c) $4, 3, -2, +3$	1/2	d) $4, 2, -1, -1/2$		
750. The orbital angular momentu	ım of an electron in 3 <i>s-</i> 0	orbital is				
a) $\frac{1}{2} \cdot \frac{h}{2\pi}$ b)	$\frac{h}{2\pi}$	c) $\frac{1}{3} \cdot \frac{h}{2\pi}$		d) Zero		
$\frac{a_{J}}{2} \cdot \frac{1}{2\pi}$	2π	$\frac{c_{3}}{3} \cdot \frac{1}{2\pi}$				
751. The uncertainties in the veloc	cities of two particles A	and B are 0.05	and 0.02 m	$ m s^{-1}$ respecively. The mass		
of B is five times to that of ma	ass A. What is the ratio	of uncertaintie	$s\left(\frac{\Delta x_A}{\Delta x_B}\right)$ in th	eir positions?		
a) 2 b)	0.25	c) 4	_	d) 1		
752. Which of the following staten		•	is correct?			
a) $3s$, $3p$ and $3d$ -orbitals all have the same energy						
b) $3s$ and $3p$ -orbitals is lower energy than $3d$ -orbital						
c) $3p$ -orbital is lower in energy than $3d$ -orbital						

d) 3s-orbital is lower in energy than 3p-orbital

			Gplus Education
753. Atoms in hydrogen gas h	ave preponderance of:		
a) ₁ H ¹ atoms			
b) Deuterium atoms			
c) Tritium atoms			
d) All the three (a),(b) ar	nd (c) are in equal ratio		
754. The energy of the electro	n at infinite distance from t	he nucleus in Bohr's model	is taken a:
a) Zero	b) Positive	c) Negative	d) Any value
755. The quantum numbers fo	or the last electron in an ato	m are n = 3, l = 1 and m =	= -1 . The atom is:
a) Al	b) Si	c) Mg	d) C
756. The maximum number of	f electrons possible in a sub	level is equal to:	
a) $2l + 1$	b) 2 <i>n</i> ²	c) 2 <i>l</i> ²	d) $4l + 2$
757. The quantum number for	the last electrons of an ato	m are $n = 2, l = 0, m = 0, s$	c = +1/2. The atom is:
a) Lithium	b) Boron	c) Carbon	d) Hydrogen
758. The radius of second stat	ionary orbit in Bohr's atom	s is R . The radius of third o	rbit will be:
a) 3 <i>R</i>	b) 9 <i>R</i>	c) 2.25 R	d) R/3
759. Number of f -orbitals ass	ociated with $n = 5$ is:		
a) 7	b) 5	c) 9	d) 10
760. The number of d -electron	ns retained in Fe^{2+} ion is :		
a) 5	b) 6	c) 3	d) 4
761. The triad of nuclei which	is isotonic is		
a) $_{6}^{14}$ C, $_{7}^{14}$ N, $_{9}^{17}$ F	b) $_{6}^{14}$ C, $_{7}^{14}$ N, $_{9}^{19}$ F	c) $_{6}^{14}$ C, $_{7}^{15}$ N, $_{9}^{17}$ F	d) ${}^{12}_{6}$ C, ${}^{14}_{7}$ N, ${}^{19}_{9}$ F
762. The wavelength of a spec	tral line in Lyman series, w	hen electron jumps back fro	om 2nd orbit, is
a) 1162 Å	b) 1216 Å	c) 1362 Å	d) 1176 Å
763. Ionisation energy of He ⁺	is 19.6×10^{-18} J atom ⁻¹ . Th	e energy of the first station	ary state $(n = 1)$ of Li^{2+} is
a) 4.41×10^{-16} J atom ⁻¹		b) -4.41×10^{-17} J atom ⁻¹	
c) -2.2×10^{-15} J atom ⁻¹		d) $8.82 \times 10^{-17} \text{J atom}^{-1}$	
764. The energy of second Bol	nr orbit of the hydrogen ato	m is -328 kJ mol ⁻¹ ; hence	the energy of fourth Bohr
orbit would be	JPLUS EDUL	ATTON	
a) –41 kJ mol ^{–1}	b) –1312 kJ mol ^{–1}	c) -164 kJ mol ⁻¹	d) –82 kJ mol ⁻¹
765. In hydrogen spectrum me	ost energetic transitions of	electrons are found in:	
a) Balmer series	b) Bracket series	c) Paschen series	d) Lyman series
766. The ratio of specific char	ge (e/m) of an electron to t	hat of a hydrogen ion is:	
a) 1 : 1	b) 1840 : 1	c) 1:1840	d) 2:1
767. Which property of eleme	nts is not a whole number?		
a) Mass number			
b) Atomic number			
c) Average atomic weigh	t		
d) None of these			
768. The maximum kinetic en			
irradiated with a radiatio		, the threshold frequency of	f the metal is about
a) $2 \times 10^{15} \text{ s}^{-1}$	b) $1 \times 10^{15} \text{ s}^{-1}$	c) $2.5 \times 10^{15} \text{ s}^{-1}$	d) $4 \times 10^{15} \text{ s}^{-1}$
769. Which of the following is	Heisenberg uncertainty pri	inciple?	
a) Δx . $\Delta p \ge \frac{h}{4\pi}$	b) $\Delta x \Delta n = \frac{h}{m}$	c) $\Delta x \cdot \Delta p \leq \frac{h}{4\pi}$	d) Δx . $\Delta p < \frac{h}{4\pi}$
	=	$\frac{\Delta x \cdot \Delta p}{4\pi}$	4π 4π
770. Which of the following m	<u>-</u>	- 222 222 222	- 14 16 15
a) $^{78}_{32}$ Ge, $^{77}_{33}$ As, $^{74}_{31}$ Ga		c) ²³³ ₉₂ U, ²³² ₉₀ Th, ²³⁹ ₉₄ Pu	d) ${}_{6}^{14}C$, ${}_{8}^{16}O$, ${}_{7}^{15}N$
771. The magnetic quantum n			
a) 3	b) 2	c) 1	d) Zero
772. Which pair has elements	containing same number of	f electrons in the outermost	t orbit?

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> **PHONE NO: 8583042324** Page | 49

Gnl	1	Ed	ucc	v+ic	n
υpi	us	LU	ucc	LIU	•

a) Cl and Br	b) Ca and Cl	c) Na and Cl	d) N and O				
73. The electromagnetic radiation with maximum wavelength is:							
a) Ultraviolet	b) Radiowaves	c) X-ray	d) Infrared				
774. An element contains:							
a) Only one type of nuclion	a) Only one type of nuclide						
b) Two types of nuclides							
c) Different types of nucl	ides						
d) None of the above							
775. Which of the following st	atements is incorrect?						
_	n and proton are equal and	opposite					
b) Neutrons have no charge							
	d electron are nearly the s	ame					
d) None of the above	·						
776. Heaviest particle is:							
a) Meson	b) Neutron	c) Proton	d) Electron				
777. The set of quantum numb	•	-	•				
-		c) $4, 0, 0, +\frac{1}{2}$					
a) 4, 1, 1, $+\frac{1}{2}$	$\frac{0}{3}, \frac{2}{2}, \frac{2}{7} + \frac{1}{2}$	c) 4, 0, 0, $+\frac{2}{2}$	$a_{1}, 2, 2, + \frac{1}{2}$				
778. A certain negative ion X ²	^{2–} has in its nucleus 18 ne	eutrons and 18 electrons in	its extra nuclear structure				
What is the mass number	of the most abundant isot	cope of X?					
a) 36	b) 35.46	c) 32	d) 39				
779. Atom containing an odd r							
a) Ferromagnetic	b) Ferrimagnetic	c) Paramagnetic	d) Diamagnetic				
780. Amplification of electrom	nagnetic waves by simulate	ed emission of radiation pro	duces:				
a) Polarised light	b) Neutrons	c) Laser	d) γ-rays				
781. In the discharge tube emi	ission of cathode rays requ	ires:					
a) Low potential and low	pressure	0.0000000000000000000000000000000000000					
b) Low potential and high	n pressure	CATION					
c) High potential and hig	h pressure						
d) High potential and low	pressure						
782. Which electron transition	n in a hydrogen atom requi	res the largest amount of er	nergy?				
a) From $n = 1$ to $n = 2$	b) From $n = 2$ to $n = 3$	c) From $n = \infty$ to $n = 1$	d) From $n = 3$ to $n = 5$				
783. The number of electrons	in the valence shell of calci	ium is					
a) 2	b) 4	c) 6	d) 8				
784. A cricket ball of 0.5 kg is	moving with a velocity of 1	.00 m/s. The wavelength as:	sociated with its motion is				
a) 1/100 cm	b) 6.6×10^{-34} m	c) 1.32×10^{-35} m	d) 6.6×10^{-28} m				
785. A body of mass 10 mg is a	moving with a velocity of 1	00 ms^{-1} . The wavelength o	f de-Broglie wave				
associated with it would	be						
$(h = 6.63 \times 10^{-34} \text{Js})$							
a) 6.63×10^{-35} m	b) 6.63×10^{-34} m	c) 6.63×10^{-31} m	d) 6.63×10^{-37} m				
786. The absolute value of the	charge on electron was de	etermined by					
a) J.J. Thomson	b) R.A. Millikan	c) Rutherford	d) Chadwick				
787. Which of the following w	ill violates aufbau principle	e as well as Pauli's exclusion	principle?				
1s $2s$ $2p$)	1s $2s$ $2p$	•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		b) 11 11 11 11 11	1				
$\frac{1s}{c}$ $\frac{2s}{4}$ $\frac{2r}{4}$)	d) None of the above	-				
	1 1						
788. The angular momentum		orbital is governed by the:					
a) Principal quantum nur	nber						

	b) Azimuthal quantum nu	mber			
	c) Magnetic quantum nun	nber			
	d) Spin quantum number				
789	. In Bohr's model of the hyd	drogen atom the ratio betw	een the period of revolution	on of an electron in the orbit	
	n = 1 to the period of rev	olution of the electron in th	te orbit $n=2$ is:		
	a) 1:2	b) 2:1	c) 1:4	d) 1 : 8	
790	The "spin-only" magnetic	moment [in unit of Bohr m	agneton, $(\mu_B)]$ of Ni $^{2+}$ in a	queous solution would be:	
	(At. no. Ni = 28)				
	a) 2.84	b) 4.90	c) 0	d) 1.73	
791	. The atoms in a molecule	vibrate around their mean	position by stretching or	bending out of place. These	
	vibration and the energy	they carry are studied by:			
	a) X-ray spectra	b) Visible spectra	c) IR spectra	d) UV spectra	
792		electrons that can have pri	nciple quantum number, <i>n</i>	z = 3 and spin quantum	
	number, $m_s = -\frac{1}{2}$, is				
	a) 3	b) 5	c) 7	d) 9	
793	. Maximum number of elec	trons present in " N " shell is	5:		
	a) 18	b) 32	c) 2	d) 8	
794	. Which electronic level wil	l allow the hydrogen atom	to absorb photon but not t	o emit?	
	a) 1 <i>s</i>	b) 2s	c) 2 <i>p</i>	d) 2 <i>d</i>	
795. The mass of electron moving with velocity of light is:					
	a) $2m_e$	b) 3 <i>m</i> _e	c) Infinite	d) Zero	
796	The electron configuration	n of the oxide ion is much n	nost similar to the electron	configuration of the	
	a) Sulphide ion	b) Nitride ion	c) Oxygen atom	d) Nitrogen atom	
797	If S_1 be the specific charge	e(e/m) of cathode ray and	S_2 be that of positive rays,	then which is true?	
	a) $S_1 = S_2$	b) $S_1 < S_2$	c) $S_1 > S_2$	d) Either of these	
		FPLUS EDÜC	ATION		

WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 51